Prediction of biomechanical properties of articular cartilage with quantitative magnetic resonance imaging

被引:113
作者
Nieminen, MT
Töyräs, J
Laasanen, MS
Silvennoinen, J
Helminen, HJ
Jurvelin, JS
机构
[1] Univ Kuopio, Dept Anat, FIN-70211 Kuopio, Finland
[2] Univ Kuopio, Dept Appl Phys, FIN-70211 Kuopio, Finland
[3] Univ Kuopio, AI Virtanen Inst Mol Sci, Natl Bio NMR Facil, FIN-70211 Kuopio, Finland
[4] Kuopio Univ Hosp, Dept Clin Physiol & Nucl Med, SF-70210 Kuopio, Finland
关键词
articular cartilage; biomechanics; MRI; collagen; proteoglycans;
D O I
10.1016/S0021-9290(03)00291-4
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Quantitative magnetic resonance imaging (MRI) is the most potential non-invasive means for revealing the structure, composition and pathology of articular cartilage. Here we hypothesize that cartilage mechanical properties as determined by the macromolecular framework and their interactions can be accessed by quantitative MRI. To test this, adjacent cartilage disk pairs (n = 32) were prepared from bovine proximal humerus and patellofemoral surfaces. For one sample, the tissue Young's modulus, aggregate modulus, dynamic modulus and Poisson's ratio were determined in unconfined compression. The adjacent disk was studied at 9.4 T to determine the tissue T(2) relaxation time, sensitive to the integrity of the collagen network, and T(1) relaxation time in the presence of Gd-DTPA. a technique developed for the estimation of cartilage proteoglycan (PG) content. Quantitative MRI parameters were able to explain up to 87% of the variations in certain biomechanical parameters. Correlations were further improved when data from the proximal humerus was assessed separately. MRI parameters revealed a topographical variation similar to that of mechanical parameters. Linear regression analysis revealed that Young's modulus of cartilage may be characterized more completely by combining both collagen- and PG-sensitive MRI parameters. The present results suggest that quantitative MRI can provide important information on the mechanical properties of articular cartilage. The results are encouraging with respect to functional imaging of cartilage, although in vivo applicability may be limited by the inferior resolution of clinical MRI instruments. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:321 / 328
页数:8
相关论文
共 49 条
[1]   VARIATIONS IN THE INTRINSIC MECHANICAL PROTERTIES OF HUMAN ARTICULAR-CARTILAGE WITH AGE, DEGENERATION, AND WATER-CONTENT [J].
ARMSTRONG, CG ;
MOW, VC .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1982, 64 (01) :88-94
[2]   COMPARATIVE-STUDY OF THE INTRINSIC MECHANICAL-PROPERTIES OF THE HUMAN ACETABULAR AND FEMORAL-HEAD CARTILAGE [J].
ATHANASIOU, KA ;
AGARWAL, A ;
DZIDA, FJ .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1994, 12 (03) :340-349
[3]   INTERSPECIES COMPARISONS OF INSITU INTRINSIC MECHANICAL-PROPERTIES OF DISTAL FEMORAL CARTILAGE [J].
ATHANASIOU, KA ;
ROSENWASSER, MP ;
BUCKWALTER, JA ;
MALININ, TI ;
MOW, VC .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1991, 9 (03) :330-340
[4]  
BADER DL, 1994, BIO-MED MATER ENG, V4, P245
[5]  
Bashir A, 1999, MAGNET RESON MED, V41, P857, DOI 10.1002/(SICI)1522-2594(199905)41:5<857::AID-MRM1>3.0.CO
[6]  
2-E
[7]   Gd-DTPA(2-) as a measure of cartilage degradation [J].
Bashir, A ;
Gray, ML ;
Burstein, D .
MAGNETIC RESONANCE IN MEDICINE, 1996, 36 (05) :665-673
[8]  
Burstein D, 2001, MAGNET RESON MED, V45, P36, DOI 10.1002/1522-2594(200101)45:1<36::AID-MRM1006>3.0.CO
[9]  
2-W
[10]   A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis [J].
Cohen, B ;
Lai, WM ;
Mow, VC .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1998, 120 (04) :491-496