Measurement of the human cadaver ossicle vibration amplitude by fiber-optic interferometry

被引:0
作者
Djinovic, Z. [1 ]
Tomic, M. [2 ]
Pavelka, R. [3 ]
Sprinzl, G. [4 ]
Traxler, H. [5 ]
机构
[1] ACMIT Gmbh, Wiener Neustadt, Austria
[2] Inst Tech Sci SASA, Belgrade, Serbia
[3] ENT Specialist, Wiener Neustadt, Austria
[4] Univ Hosp St Polten, St Polten, Austria
[5] Med Univ Vienna, Ctr Anat & Cell Biol, Vienna, Austria
来源
2020 43RD INTERNATIONAL CONVENTION ON INFORMATION, COMMUNICATION AND ELECTRONIC TECHNOLOGY (MIPRO 2020) | 2020年
关键词
fiber-optic sensors; vibration measurement; implantable microphone; hearing aid; MICROPHONE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we present the results obtained by contactless measurement of vibration of the incus inside the middle ear of a human cadaver, exposed to an external calibrated sound source. The measurement configuration was a Michelson fiber-optic interferometer based on a 3x3 fiber optic coupler, with a VCSEL source. The interferometric signal fading was solved using two quasi-quadrature signals and specialized signal processing. The ossicle reflection was augmented by a very light piece of retroreflective material attached to the bone. We measured the amplitude of vibration at different sound pressure levels, independently monitored by a decibel meter placed in the proximity of the cadaver ear. The accuracy of the measurement technique was proved by using a calibrated piezo transducer exposed to vibrate with amplitude of 7nm at 1kHz. We performed the experiments on 8 cadavers in total. The measured amplitudes were found to be in the range between 1 pm and 1 nm, under the sound excitation of 40-90 dB SPL @ IkHz, respectively.
引用
收藏
页码:1894 / 1898
页数:5
相关论文
共 17 条
[1]   Implantable and Semi-Implantable Hearing Aids: A Review of History, Indications, and Surgery [J].
Bittencourt, Aline Gomes ;
Burke, Patrick Rademaker ;
Jardim, Isabela de Souza ;
de Brito, Rubens ;
Tsuji, Robinson Koji ;
de Oliveira Fonseca, Anna Carolina ;
Bento, Ricardo Ferreira .
INTERNATIONAL ARCHIVES OF OTORHINOLARYNGOLOGY, 2014, 18 (03) :303-310
[2]  
Calero D., 5 JOINT M ASA ASJ HO
[3]   A technical review and evaluation of implantable sensors for hearing devices [J].
Calero, Diego ;
Paul, Stephan ;
Gesing, Andre ;
Alves, Fabio ;
Cordioli, Julio A. .
BIOMEDICAL ENGINEERING ONLINE, 2018, 17
[4]   In-vitro and in-vivo measurement of the animal's middle ear acoustical response by partially implantable fiber-optic sensing system [J].
Djinovic, Zoran ;
Pavelka, Robert ;
Tomic, Milos ;
Sprinzl, Georg ;
Plenk, Hanns ;
Losert, Udo ;
Bergmeister, Helga ;
Plasenzotti, Roberto .
BIOSENSORS & BIOELECTRONICS, 2018, 103 :176-181
[5]   Feasibility of an implanted microphone for cochlear implant listening [J].
Gerard, Jean-Marc ;
Demanez, Laurent ;
Salmon, Caroline ;
Vanpoucke, Filiep ;
Walraevens, Joris ;
Plasmans, Anke ;
De Siati, Daniele ;
Lefebvre, Philippe .
EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2017, 274 (03) :1383-1390
[6]   Speech Perception Comparisons Using an Implanted and an External Microphone in Existing Cochlear Implant Users [J].
Jenkins, Herman A. ;
Uhler, Kristin .
OTOLOGY & NEUROTOLOGY, 2012, 33 (01) :13-19
[7]   Fully implantable hearing aid in the incudostapedial joint gap [J].
Koch, Martin ;
Essinger, Till Moritz ;
Stoppe, Thomas ;
Lasurashvili, Nikoloz ;
Bornitz, Matthias ;
Zahnert, Thomas .
HEARING RESEARCH, 2016, 340 :169-178
[8]   PASSIVE STABILIZATION SCHEME FOR FIBER INTERFEROMETERS USING (3X3) FIBER DIRECTIONAL-COUPLERS [J].
KOO, KP ;
TVETEN, AB ;
DANDRIDGE, A .
APPLIED PHYSICS LETTERS, 1982, 41 (07) :616-618
[9]  
Mitchell-Innes Alistair, 2017, Cochlear Implants Int, V18, P304, DOI 10.1080/14670100.2017.1371974
[10]   PVDF-Based Piezoelectric Microphone for Sound Detection Inside the Cochlea: Toward Totally Implantable Cochlear Implants [J].
Park, Steve ;
Guan, Xiying ;
Kim, Youngwan ;
Creighton, Francis X. ;
Wei, Eric ;
Kymissis, Ioannis ;
Nakajima, Hideko Heidi ;
Olson, Elizabeth S. .
TRENDS IN HEARING, 2018, 22