Global analysis of competition for perfectly substitutable resources with linear response

被引:28
作者
Ballyk, MM [1 ]
McCluskey, CC [1 ]
Wolkowicz, GSK [1 ]
机构
[1] New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USA
关键词
perfectly substitutable resources; competition; compound matrices; bifurcation; Lyapunov techniques;
D O I
10.1007/s00285-005-0333-7
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study a model of the chemostat with two species competing for two perfectly substitutable resources in the case of linear functional response. Lyapunov methods are used to provide sufficient conditions for the global asymptotic stability of the coexistence equilibrium. Then, using compound matrix techniques, we provide a global analysis in a subset of parameter space. In particular, we show that each solution converges to an equilibrium, even in the case that the coexistence equilibrium is a saddle. Finally, we provide a bifurcation analysis based on the dilution rate. In this context, we are able to provide a geometric interpretation that gives insight into the role of the other parameters in the bifurcation sequence.
引用
收藏
页码:458 / 490
页数:33
相关论文
共 39 条
[1]  
[Anonymous], 1961, STABILITY LIAPUNOVS
[2]   Global results for an epidemic model with vaccination that exhibits backward bifurcation [J].
Arino, J ;
McCluskey, CC ;
Van den Driessche, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 64 (01) :260-276
[3]   COMPETITIVE-EXCLUSION [J].
ARMSTRONG, RA ;
MCGEHEE, R .
AMERICAN NATURALIST, 1980, 115 (02) :151-170
[4]   EXPLOITATIVE COMPETITION IN THE CHEMOSTAT FOR 2 PERFECTLY SUBSTITUTABLE RESOURCES [J].
BALLYK, MM ;
WOLKOWICZ, GSK .
MATHEMATICAL BIOSCIENCES, 1993, 118 (02) :127-180
[5]  
BALLYK MM, 1995, J MATH BIOL, V33, P435
[6]   UNIFORMLY PERSISTENT SYSTEMS [J].
BUTLER, G ;
FREEDMAN, HI ;
WALTMAN, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 96 (03) :425-430
[7]   EXPLOITATIVE COMPETITION IN A CHEMOSTAT FOR 2 COMPLEMENTARY, AND POSSIBLY INHIBITORY, RESOURCES [J].
BUTLER, GJ ;
WOLKOWICZ, GSK .
MATHEMATICAL BIOSCIENCES, 1987, 83 (01) :1-48
[8]   A MATHEMATICAL-MODEL OF THE CHEMOSTAT WITH A GENERAL-CLASS OF FUNCTIONS DESCRIBING NUTRIENT-UPTAKE [J].
BUTLER, GJ ;
WOLKOWICZ, GSK .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1985, 45 (01) :138-151
[9]  
Coppel W.A., 1965, STABILITY ASYMPTOTIC
[10]   The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach [J].
Diekmann, O ;
Jabin, PE ;
Mischler, S ;
Perthame, B .
THEORETICAL POPULATION BIOLOGY, 2005, 67 (04) :257-271