Application of Fuzzy Support Vector Machine in Short-Term Power Load Forecasting

被引:3
|
作者
Yang, Jie [1 ]
Tang, Yachun [1 ]
Duan, Huabin [1 ]
机构
[1] Hunan Univ Sci & Engn, Coll Informat Engn, Yongzhou, Peoples R China
关键词
Fuzzy Support Vector Machine; Linear Extrapolatio; Load Forecasting; Power System; Short-Term Forecast of Power;
D O I
10.4018/JCIT.295248
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The realization of short-term load forecasting is the basis of system planning and decision-making, and it is an important index to evaluate the safety and economy of power grid. In order to accurately predict the power load under the influence of many factors, a new short-term power load prediction method based on fuzzy support vector machine and similar daily linear extrapolation is proposed, which combines the method of fuzzy support vector machine and linear extrapolation of similar days. The method first selects similar days according to the effect of integrated weather and time on load. Then the fuzzy membership of the training sample is obtained by the normalization processing, and the daily maximum and minimum load is predicted by the fuzzy support vector machine. Finally, the load prediction value is obtained by combining the load trend curve obtained by the similar daily linear extrapolation method, and this method is feasible and effective for short-term forecasting of power load.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Application of RBF Neural Network in Short-Term Load Forecasting
    Liang, Yongchun
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT I, 2010, 6319 : 1 - 9
  • [22] Application of load, regularity evaluation in short-term load forecasting
    Mu, G
    Chen, YH
    Ma, L
    2002 IEEE REGION 10 CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND POWER ENGINEERING, VOLS I-III, PROCEEDINGS, 2002, : 1797 - 1800
  • [23] RESEARCH ON POWER LOAD FORECASTING BASED ON SUPPORT VECTOR MACHINE
    Liu Qi
    Huang Zhenzhen
    Li Sheng
    JOURNAL OF THE BALKAN TRIBOLOGICAL ASSOCIATION, 2016, 22 (01): : 151 - 159
  • [24] Short-term Load Forecasting Method for Power System Based on Adaptive Neural Fuzzy Inference System
    Li, Song
    Wang, Jie-sheng
    Wang, Min-wei
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 2920 - 2925
  • [25] The Short-Term Load Forecasting of Power System Based on Genetic-Fuzzy Algorithm
    Ding, Qiao-lin
    Pan, Xue-hua
    Liu, Jian-xin
    2008 CHINA INTERNATIONAL CONFERENCE ON ELECTRICITY DISTRIBUTION, VOLS 1 AND 2, 2009, : 815 - 818
  • [26] Short-term load forecasting based on fuzzy neural network
    Wang, Cuiru
    Cui, Zhikun
    Chen, Qi
    IITA 2007: WORKSHOP ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, PROCEEDINGS, 2007, : 335 - 338
  • [27] NEURAL NETWORKS APPLICATION IN SHORT-TERM LOAD FORECASTING
    Tudose, Andrei
    Picioroaga, Irina
    Sidea, Dorian
    Bulac, Constantin
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2021, 83 (02): : 231 - 240
  • [28] Short-term load forecasting using Fuzzy Neural Network
    Shao, S
    Sun, YM
    FOURTH INTERNATIONAL CONFERENCE ON ADVANCES IN POWER SYSTEM CONTROL, OPERATION & MANAGEMENT, VOLS 1 AND 2, 1997, : 131 - 134
  • [29] The Short-term Load Forecasting by Applying the Fuzzy Neural Net
    Wang Xiao-Wen
    Fu Xuan
    Sun Xiao-Yu
    Wu Zhi-Hong
    2013 6TH INTERNATIONAL CONFERENCE ON INTELLIGENT NETWORKS AND INTELLIGENT SYSTEMS (ICINIS), 2013, : 178 - 180
  • [30] SHORT-TERM LOAD FORECASTING USING FUZZY NEURAL NETWORKS
    BAKIRTZIS, AG
    THEOCHARIS, JB
    KIARTZIS, SJ
    SATSIOS, KJ
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1995, 10 (03) : 1518 - 1524