Data Loss Reconstruction Method for a Bridge Weigh-in-Motion System Using Generative Adversarial Networks

被引:12
|
作者
Zhuang, Yizhou [1 ]
Qin, Jiacheng [1 ]
Chen, Bin [2 ,3 ]
Dong, Chuanzhi [4 ]
Xue, Chenbo [1 ]
Easa, Said M. [5 ]
机构
[1] Zhejiang Univ Technol, Coll Civil Engn, Hangzhou 310014, Peoples R China
[2] Zhejiang Univ City Coll, Dept Civil Engn, Hangzhou 310015, Peoples R China
[3] Yangtze Delta Inst Urban Infrastruct, Hangzhou 310005, Peoples R China
[4] Univ Cent Florida, Dept Civil Environm & Construct Engn, Orlando, FL 32816 USA
[5] Ryerson Univ, Dept Civil Engn, Toronto, ON M5B 2K3, Canada
基金
中国国家自然科学基金;
关键词
bridge weigh-in-motion system; data loss; data reconstruction; generative adversarial network; convolutional neural network; deep learning;
D O I
10.3390/s22030858
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In the application of a bridge weigh-in-motion (WIM) system, the collected data may be temporarily or permanently lost due to sensor failure or system transmission failure. The high data loss rate weakens the distribution characteristics of the collected data and the ability of the monitoring system to conduct assessments on bridge condition. A deep learning-based model, or generative adversarial network (GAN), is proposed to reconstruct the missing data in the bridge WIM systems. The proposed GAN in this study can model the collected dataset and predict the missing data. Firstly, the data from stable measurements before the data loss are provided, and then the generator is trained to extract the retained features from the dataset and the data lost in the process are collected by using only the responses of the remaining functional sensors. The discriminator feeds back the recognition results to the generator in order to improve its reconstruction accuracy. In the model training, two loss functions, generation loss and confrontation loss, are used, and the general outline and potential distribution characteristics of the signal are well processed by the model. Finally, by applying the engineering data of the Hangzhou Jiangdong Bridge to the GAN model, this paper verifies the effectiveness of the proposed method. The results show that the final reconstructed dataset is in good agreement with the actual dataset in terms of total vehicle weight and axle weight. Furthermore, the approximate contour and potential distribution characteristics of the original dataset are reproduced. It is suggested that the proposed method can be used in real-life applications. This research can provide a promising method for the data reconstruction of bridge monitoring systems.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Multiframe infrared image super-resolution reconstruction using generative adversarial networks
    Li F.
    He X.
    Wei Z.
    He J.
    He D.
    2018, Chinese Society of Astronautics (47):
  • [32] Surgical Tool Segmentation Using Generative Adversarial Networks With Unpaired Training Data
    Zhang, Zhongkai
    Rosa, Benoit
    Nageotte, Florent
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) : 6266 - 6273
  • [33] Deep learning-based stochastic ground motion modeling using generative adversarial and convolutional neural networks
    Masoudifar, Mohsen
    Mahsuli, Mojtaba
    Taciroglu, Ertugrul
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2025, 194
  • [34] Image Super-Resolution Reconstruction Using Generative Adversarial Networks Based on Wide-Channel Activation
    Sun, Xudong
    Zhao, Zhenxi
    Zhang, Song
    Liu, Jintao
    Yang, Xinting
    Zhou, Chao
    IEEE ACCESS, 2020, 8 : 33838 - 33854
  • [35] Imputation of missing data with class imbalance using conditional generative adversarial networks
    Awan, Saqib Ejaz
    Bennamoun, Mohammed
    Sohel, Ferdous
    Sanfilippo, Frank
    Dwivedi, Girish
    NEUROCOMPUTING, 2021, 453 : 164 - 171
  • [36] Comparison of a Deep Learning-based Axle Load Estimator and the Matrix Method in Strain Gauge-based Bridge Weigh-In-Motion Systems
    Szinyeri, Bence
    Kovari, Bence
    2023 10TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE, ISCMI, 2023, : 12 - 16
  • [37] Medical Image Synthesis for Data Augmentation and Anonymization Using Generative Adversarial Networks
    Shin, Hoo-Chang
    Tenenholtz, Neil A.
    Rogers, Jameson K.
    Schwarz, Christopher G.
    Senjem, Matthew L.
    Gunter, Jeffrey L.
    Andriole, Katherine P.
    Michalski, Mark
    SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, 2018, 11037 : 1 - 11
  • [38] Analyzing DDoS Attack Classification with Data Imbalance Using Generative Adversarial Networks
    Acosta-Tejada, Danny E.
    Sanchez-Galan, Javier E.
    Torres-Batista, Nelliud
    2023 IEEE LATIN-AMERICAN CONFERENCE ON COMMUNICATIONS, LATINCOM, 2023,
  • [39] Machinery fault diagnosis with imbalanced data using deep generative adversarial networks
    Zhang, Wei
    Li, Xiang
    Jia, Xiao-Dong
    Ma, Hui
    Luo, Zhong
    Li, Xu
    MEASUREMENT, 2020, 152
  • [40] Augmentation of Doppler Radar Data Using Generative Adversarial Network for Human Motion Analysis
    Alnujaim, Ibrahim
    Kim, Youngwook
    HEALTHCARE INFORMATICS RESEARCH, 2019, 25 (04) : 344 - 349