Probabilistic approach to Appell polynomials

被引:24
作者
Ta, Bao Quoc [1 ]
机构
[1] Abo Akad Univ, Dept Nat Sci Math & Stat, FIN-20500 Turku, Finland
关键词
Appell polynomials; Gamma distribution; Bernoulli; Euler; Hermite; Laguerre polynomials; BERNOULLI; RISK;
D O I
10.1016/j.exmath.2014.07.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study Appell polynomials by connecting them to random variables. This probabilistic approach yields, e.g., the mean value property which is fundamental in the sense that many other properties can be derived from it. We also discuss moment representations of Appell polynomials. In the latter part of the paper the presented general theory is applied to study some classical explicitly given polynomials. (C) 2014 Elsevier GmbH. All rights reserved.
引用
收藏
页码:269 / 294
页数:26
相关论文
共 25 条
  • [1] Abramowitz M., 1968, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, V55
  • [2] [Anonymous], 1954, Tables of integral transforms
  • [3] [Anonymous], 2004, TEOR VEROYATN PRIMEN
  • [4] Appell P., 1880, Annales Scientifiques de l'E.N.S. 2me serie, V9, P119
  • [5] SIGN OF BERNOULLI AND EULER NUMBERS
    CARLITZ, L
    SCOVILLE, R
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (05) : 548 - 549
  • [6] Carlitz L., 1961, PORT MATH, V20, P43
  • [7] Chihara T. S., 1978, An Introduction to Orthogonal Polynomials
  • [8] Erdelyi Arthur, 1981, HIGHER TRANSCENDENTA, VII, DOI DOI 10.1016/j.jet.2005.04.006
  • [9] A finite-time ruin probability formula for continuous claim severities
    Ignatov, ZG
    Kaishev, VK
    [J]. JOURNAL OF APPLIED PROBABILITY, 2004, 41 (02) : 570 - 578
  • [10] Kyprianou A.E., 2014, UNIVERSITEXT