The Bezier variant of Kantorovitch operators

被引:0
|
作者
Gupta, V [1 ]
机构
[1] Netaji Subhas Inst Technol, Sch Appl Sci, New Delhi 110045, India
关键词
rate of convergence; bounded variation; total variation; Baskakov-Kantorovitch operators; Szasz-Kantorovitch operators;
D O I
10.1016/S0898-1221(04)90019-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we define generalized Kantorovitch-type operators, for particular values our operators reduce to the well-known Szasz-Kantorovitch operators and Baskakov-Kantorovitch operators. We estimate the rate of convergence of the Bezier variant of these generalized operators for bounded variation functions. Here we also remark that for a particular value (c = 0) the second central moment was not estimated correctly in [1], which leads to the major error in the main results of [1]. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:227 / 232
页数:6
相关论文
共 50 条
  • [41] Bézier variant of modified α-Bernstein operators
    P. N. Agrawal
    Neha Bhardwaj
    Parveen Bawa
    Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 807 - 827
  • [42] Approximation by a Kantorovich Variant of Szász Operators Based on Brenke-Type Polynomials
    Özlem Öksüzer
    Harun Karsli
    Fatma Taşdelen
    Mediterranean Journal of Mathematics, 2016, 13 : 3327 - 3340
  • [43] Rate of convergence of the Bezier variant of an operator involving Laguerre polynomials
    Oksuzer, Ozlem
    Karsli, Harun
    Yesildal, Fatma Tasdelen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (03) : 912 - 919
  • [44] Approximation of a kind of new Bernstein-Bezier type operators
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    Zhang, Wen-Hui
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (02) : 355 - 364
  • [45] A New Estimate on the Rate of Convergence of Durrmeyer-Bezier Operators
    Wang, Pinghua
    Zhou, Yali
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
  • [46] A NOTE ON RATE OF APPROXIMATION FOR CERTAIN BEZIER-DURRMEYER OPERATORS
    Gupta, Vijay
    Deo, Naokant
    MATEMATICKI VESNIK, 2011, 63 (01): : 27 - 32
  • [47] POINTWISE APPROXIMATION BY BEZIER VARIANT OF AN OPERATOR BASED ON LAGUERRE POLYNOMIALS
    Deshwal, Sheetal
    Acu, Ana Maria
    Agrawal, P. N.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (03): : 693 - 707
  • [48] Local approximation by a variant of Bernstein-Durrmeyer operators
    Abel, Ulrich
    Gupta, Vijay
    Mohapatra, Ram N.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (11) : 3372 - 3381
  • [49] Bèzier variant of the generalized Baskakov Kantorovich operators
    Goyal M.
    Agrawal P.N.
    Bollettino dell'Unione Matematica Italiana, 2016, 8 (4) : 229 - 238
  • [50] Approximation properties of Bezier-summation-integral type operators based on Polya-Bernstein functions
    Agrawal, P. N.
    Ispir, Nurhayat
    Kajla, Arun
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 533 - 539