A new method for sequential learning of states and parameters for state-space models: the particle swarm learning optimization

被引:0
作者
Guzman, I. R. E. [1 ]
Ccori, P. C. C. [2 ]
机构
[1] Univ Fed Espirito Santo, Dept Stat, UFES, Av Fernando Ferrari 514, BR-29075910 Vitoria, ES, Brazil
[2] Univ Sao Paulo, Inst Math & Stat, Dept Comp Sci, Sao Paulo, Brazil
关键词
Nonlinear models; particle filter; particle swarm optimization; swarm computation; STOCHASTIC VOLATILITY MODEL; BAYESIAN-ANALYSIS; LIKELIHOOD; SIMULATION; LEVERAGE; INFERENCE; SAMPLER;
D O I
10.1080/00949655.2020.1762600
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Accuracy of parameter estimation and efficiency of state simulation are common concerns in the implementation of state-space models. Even widely used methods such as Kalman filters with MCMC and Particle Filter, still present concerns with efficiency and accuracy, despite their successful results in their respective applications.This article presents a new method combining the structure of particle learning and bare bones particle swarm optimization (BBPSO) to the process of smoothing and filtering the states in the state-space models, thus overcoming the efficiency and accuracy problems. Sampling importance re-sampling is used to estimate the states of the model, then the parameters can be estimated via BBPSO, as an alternative to the kernel approximation of Liu and West. Our method is applied to stochastic volatility and AR(1) state-space models. Empirical results with Ibovespa and SP500 index show better performance when compared to particle filters, thus improving efficiency and accuracy.
引用
收藏
页码:2057 / 2079
页数:23
相关论文
共 34 条
[1]   Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions [J].
Abanto-Valle, C. A. ;
Bandyopadhyay, D. ;
Lachos, V. H. ;
Enriquez, I. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (12) :2883-2898
[2]   GMM estimation of a stochastic volatility model: A Monte Carlo study [J].
Andersen, TG ;
Sorensen, BE .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1996, 14 (03) :328-352
[3]  
Billingsley P., 2011, Probability and measure, Vanniversary
[4]   Bare Bones Particle Swarm Optimization With Scale Matrix Adaptation [J].
Campos, Mauro ;
Krohling, Renato A. ;
Enriquez, Ivan .
IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (09) :1567-1578
[5]   Particle Learning and Smoothing [J].
Carvalho, Carlos M. ;
Johannes, Michael S. ;
Lopes, Hedibert F. ;
Polson, Nicholas G. .
STATISTICAL SCIENCE, 2010, 25 (01) :88-106
[6]   Marginal likelihood from the Gibbs output [J].
Chib, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (432) :1313-1321
[7]  
DEJONG P, 1995, BIOMETRIKA, V82, P339
[8]   Bayesian Nonparametric Modelling of the Return Distribution with Stochastic Volatility [J].
Delatola, Eleni-Ioanna ;
Griffin, Jim E. .
BAYESIAN ANALYSIS, 2011, 6 (04) :901-926
[9]  
Geweke J, 2006, HBK ECON, V24, P3, DOI 10.1016/S1574-0706(05)01001-3
[10]   NOVEL-APPROACH TO NONLINEAR NON-GAUSSIAN BAYESIAN STATE ESTIMATION [J].
GORDON, NJ ;
SALMOND, DJ ;
SMITH, AFM .
IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (02) :107-113