A computational comparative analysis of the binding mechanism of molnupiravir's active metabolite to RNA-dependent RNA polymerase of wild-type and Delta subvariant AY.4 of SARS-CoV-2

被引:25
作者
Celik, Ismail [1 ]
Tallei, Trina E. [2 ]
机构
[1] Erciyes Univ, Fac Pharm, Dept Pharmaceut Chem, Kayseri, Turkey
[2] Sam Ratulangi Univ, Fac Math & Nat Sci, Dept Biol, Manado 95115, North Sulawesi, Indonesia
关键词
binding mechanism; computational analysis; COVID-19; Delta subvariant AY; 4; molnupiravir triphosphate; RNA-dependent RNA polymerase; SARS-CoV-2;
D O I
10.1002/jcb.30226
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The antiviral drug molnupiravir targets the SARS-CoV-2 RNA-dependent RNA polymerase (RdRP) enzyme. Early treatment with molnupiravir reduced the risk of hospitalization or death in at-risk, unvaccinated adults with COVID-19, according to phase 3 clinical trials. Many mutations have occurred within this virus as a result of its widespread distribution. The current study sought to determine whether mutations in the RdRP of Delta subvariant AY.4 (D-AY.4 RdRP) influence the interaction of the enzyme with molnupiravir triphosphate (MTP), the active metabolite of molnupiravir. The interactions between the wild-type (WT) RdRP and D-AY.4 RdRP with MTP were evaluated based on molecular docking and dynamic simulation (MD) studies. The results show that the MTP interaction is stronger and more stable with D-AY.4 RdRP than with WT RdRP. This study provides insight into the potential significance of administering MTP to patients infected with D-AY.4 RdRP, which may have a more favorable chance of alleviating the illness. According to the findings of this study, MTP has a high likelihood of becoming widely used as an anti-SARS-CoV-2 agent. The fact that MTP is not only cytotoxic but also mutagenic to mammalian cells, as well as the possibility that it may cause DNA damage in the host, have all been raised as potential concerns.
引用
收藏
页码:807 / 818
页数:12
相关论文
共 49 条
  • [1] Abelian A., 2021, Remington (twenty-third edition), P105, DOI DOI 10.1016/B978-0-12-820007-0.00006-4
  • [2] Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
    Abraham, Mark James
    Murtola, Teemu
    Schulz, Roland
    Páll, Szilárd
    Smith, Jeremy C.
    Hess, Berk
    Lindah, Erik
    [J]. SoftwareX, 2015, 1-2 : 19 - 25
  • [3] Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach
    Aftab, Syed Ovais
    Ghouri, Muhammad Zubair
    Masood, Muhammad Umer
    Haider, Zeshan
    Khan, Zulqurnain
    Ahmad, Aftab
    Munawar, Nayla
    [J]. JOURNAL OF TRANSLATIONAL MEDICINE, 2020, 18 (01)
  • [4] Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates
    Ahn, Dae-Gyun
    Choi, Jin-Kyu
    Taylor, Deborah R.
    Oh, Jong-Won
    [J]. ARCHIVES OF VIROLOGY, 2012, 157 (11) : 2095 - 2104
  • [5] Imatinib in patients with severe COVID-19: a randomised, double-blind, placebo-controlled, clinical trial
    Aman, Jurjan
    Duijvelaar, Erik
    Botros, Liza
    Kianzad, Azar
    Schippers, Job R.
    Smeele, Patrick J.
    Azhang, Sara
    Bartelink, Imke H.
    Bayoumy, Ahmed A.
    Bet, Pierre M.
    Boersma, Wim
    Bonta, Peter, I
    Boomars, Karin A. T.
    Bos, Lieuwe D. J.
    Bragt, Job J. M. H. van
    Braunstahl, Gert-Jan
    Celant, Lucas R.
    Eger, Katrien A. B.
    Geelhoed, J. J. Miranda
    Glabbeek, Yurika L. E. van
    Grotjohan, Hans P.
    Hagens, Laura A.
    Happe, Chris M.
    Hazes, Boaz D.
    Heunks, Leo M. A.
    Heuvel, Michel van den
    Hoefsloot, Wouter
    Hoek, Rianne J. A.
    Hoekstra, Romke
    Hofstee, Herman M. A.
    Juffermans, Nicole P.
    Kemper, E. Marleen
    Kos, Renate
    Kunst, Peter W. A.
    Lammers, Ariana
    Lee, Ivo van der
    Lee, E. Laurien van der
    Zee, Anke-Hilse Maitland-van der
    Asam, Pearl F. M. Mau
    Mieras, Adinda
    Muller, Mirte
    Neefjes, Elisabeth C. W.
    Nossent, Esther J.
    Oswald, Laurien M. A.
    Overbeek, Maria J.
    Pamplona, Carolina C.
    Paternotte, Nienke
    Pronk, Niels
    Raaf, Michiel A. de
    Raaij, Bas F. M. van
    [J]. LANCET RESPIRATORY MEDICINE, 2021, 9 (09) : 957 - 968
  • [6] The development and validation of a novel LC-MS/MS method for the simultaneous quantification of Molnupiravir and its metabolite β-d-N4-hydroxycytidine in human plasma and saliva
    Amara, Alieu
    Penchala, Sujan Dilly
    Else, Laura
    Hale, Colin
    FitzGerald, Richard
    Walker, Lauren
    Lyons, Rebecca
    Fletcher, Tom
    Khoo, Saye
    [J]. JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2021, 206
  • [7] Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients
    Bernal, A. Jayk
    da Silva, M. M. Gomes
    Musungaie, D. B.
    Kovalchuk, E.
    Gonzalez, A.
    Delos Reyes, V
    Martin-Quiros, A.
    Caraco, Y.
    Williams-Diaz, A.
    Brown, M. L.
    Du, J.
    Pedley, A.
    Assaid, C.
    Strizki, J.
    Grobler, J. A.
    Shamsuddin, H. H.
    Tipping, R.
    Wan, H.
    Paschke, A.
    Butterton, J. R.
    Johnson, M. G.
    De Anda, C.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2022, 386 (06) : 509 - 520
  • [8] SARS-CoV-2 RNA polymerase as target for antiviral therapy
    Buonaguro, Luigi
    Tagliamonte, Maria
    Tornesello, Maria Lina
    Buonaguro, Franco M.
    [J]. JOURNAL OF TRANSLATIONAL MEDICINE, 2020, 18 (01)
  • [9] Interactions of the Receptor Binding Domain of SARS-CoV-2 Variants with hACE2: Insights from Molecular Docking Analysis and Molecular Dynamic Simulation
    Celik, Ismail
    Yadav, Rohitash
    Duzgun, Zekeriya
    Albogami, Sarah
    El-Shehawi, Ahmed M.
    Fatimawali, Fatimawali
    Idroes, Rinaldi
    Tallei, Trina Ekawati
    Bin Emran, Talha
    [J]. BIOLOGY-BASEL, 2021, 10 (09):
  • [10] In silico evaluation of potential inhibitory activity of remdesivir, favipiravir, ribavirin and galidesivir active forms on SARS-CoV-2 RNA polymerase
    Celik, Ismail
    Erol, Meryem
    Duzgun, Zekeriya
    [J]. MOLECULAR DIVERSITY, 2022, 26 (01) : 279 - 292