A computational comparative analysis of the binding mechanism of molnupiravir's active metabolite to RNA-dependent RNA polymerase of wild-type and Delta subvariant AY.4 of SARS-CoV-2

被引:26
作者
Celik, Ismail [1 ]
Tallei, Trina E. [2 ]
机构
[1] Erciyes Univ, Fac Pharm, Dept Pharmaceut Chem, Kayseri, Turkey
[2] Sam Ratulangi Univ, Fac Math & Nat Sci, Dept Biol, Manado 95115, North Sulawesi, Indonesia
关键词
binding mechanism; computational analysis; COVID-19; Delta subvariant AY; 4; molnupiravir triphosphate; RNA-dependent RNA polymerase; SARS-CoV-2;
D O I
10.1002/jcb.30226
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The antiviral drug molnupiravir targets the SARS-CoV-2 RNA-dependent RNA polymerase (RdRP) enzyme. Early treatment with molnupiravir reduced the risk of hospitalization or death in at-risk, unvaccinated adults with COVID-19, according to phase 3 clinical trials. Many mutations have occurred within this virus as a result of its widespread distribution. The current study sought to determine whether mutations in the RdRP of Delta subvariant AY.4 (D-AY.4 RdRP) influence the interaction of the enzyme with molnupiravir triphosphate (MTP), the active metabolite of molnupiravir. The interactions between the wild-type (WT) RdRP and D-AY.4 RdRP with MTP were evaluated based on molecular docking and dynamic simulation (MD) studies. The results show that the MTP interaction is stronger and more stable with D-AY.4 RdRP than with WT RdRP. This study provides insight into the potential significance of administering MTP to patients infected with D-AY.4 RdRP, which may have a more favorable chance of alleviating the illness. According to the findings of this study, MTP has a high likelihood of becoming widely used as an anti-SARS-CoV-2 agent. The fact that MTP is not only cytotoxic but also mutagenic to mammalian cells, as well as the possibility that it may cause DNA damage in the host, have all been raised as potential concerns.
引用
收藏
页码:807 / 818
页数:12
相关论文
共 49 条
[1]  
Abelian A., 2021, Remington (twenty-third edition), P105, DOI [10.1016/B978-0-12-820007-0.00006-4, DOI 10.1016/B978-0-12-820007-0.00006-4]
[2]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[3]   Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach [J].
Aftab, Syed Ovais ;
Ghouri, Muhammad Zubair ;
Masood, Muhammad Umer ;
Haider, Zeshan ;
Khan, Zulqurnain ;
Ahmad, Aftab ;
Munawar, Nayla .
JOURNAL OF TRANSLATIONAL MEDICINE, 2020, 18 (01)
[4]   Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates [J].
Ahn, Dae-Gyun ;
Choi, Jin-Kyu ;
Taylor, Deborah R. ;
Oh, Jong-Won .
ARCHIVES OF VIROLOGY, 2012, 157 (11) :2095-2104
[5]   Imatinib in patients with severe COVID-19: a randomised, double-blind, placebo-controlled, clinical trial [J].
Aman, Jurjan ;
Duijvelaar, Erik ;
Botros, Liza ;
Kianzad, Azar ;
Schippers, Job R. ;
Smeele, Patrick J. ;
Azhang, Sara ;
Bartelink, Imke H. ;
Bayoumy, Ahmed A. ;
Bet, Pierre M. ;
Boersma, Wim ;
Bonta, Peter, I ;
Boomars, Karin A. T. ;
Bos, Lieuwe D. J. ;
Bragt, Job J. M. H. van ;
Braunstahl, Gert-Jan ;
Celant, Lucas R. ;
Eger, Katrien A. B. ;
Geelhoed, J. J. Miranda ;
Glabbeek, Yurika L. E. van ;
Grotjohan, Hans P. ;
Hagens, Laura A. ;
Happe, Chris M. ;
Hazes, Boaz D. ;
Heunks, Leo M. A. ;
Heuvel, Michel van den ;
Hoefsloot, Wouter ;
Hoek, Rianne J. A. ;
Hoekstra, Romke ;
Hofstee, Herman M. A. ;
Juffermans, Nicole P. ;
Kemper, E. Marleen ;
Kos, Renate ;
Kunst, Peter W. A. ;
Lammers, Ariana ;
Lee, Ivo van der ;
Lee, E. Laurien van der ;
Zee, Anke-Hilse Maitland-van der ;
Asam, Pearl F. M. Mau ;
Mieras, Adinda ;
Muller, Mirte ;
Neefjes, Elisabeth C. W. ;
Nossent, Esther J. ;
Oswald, Laurien M. A. ;
Overbeek, Maria J. ;
Pamplona, Carolina C. ;
Paternotte, Nienke ;
Pronk, Niels ;
Raaf, Michiel A. de ;
Raaij, Bas F. M. van .
LANCET RESPIRATORY MEDICINE, 2021, 9 (09) :957-968
[6]   The development and validation of a novel LC-MS/MS method for the simultaneous quantification of Molnupiravir and its metabolite β-d-N4-hydroxycytidine in human plasma and saliva [J].
Amara, Alieu ;
Penchala, Sujan Dilly ;
Else, Laura ;
Hale, Colin ;
FitzGerald, Richard ;
Walker, Lauren ;
Lyons, Rebecca ;
Fletcher, Tom ;
Khoo, Saye .
JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2021, 206
[7]   Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients [J].
Bernal, A. Jayk ;
da Silva, M. M. Gomes ;
Musungaie, D. B. ;
Kovalchuk, E. ;
Gonzalez, A. ;
Delos Reyes, V ;
Martin-Quiros, A. ;
Caraco, Y. ;
Williams-Diaz, A. ;
Brown, M. L. ;
Du, J. ;
Pedley, A. ;
Assaid, C. ;
Strizki, J. ;
Grobler, J. A. ;
Shamsuddin, H. H. ;
Tipping, R. ;
Wan, H. ;
Paschke, A. ;
Butterton, J. R. ;
Johnson, M. G. ;
De Anda, C. .
NEW ENGLAND JOURNAL OF MEDICINE, 2022, 386 (06) :509-520
[8]   SARS-CoV-2 RNA polymerase as target for antiviral therapy [J].
Buonaguro, Luigi ;
Tagliamonte, Maria ;
Tornesello, Maria Lina ;
Buonaguro, Franco M. .
JOURNAL OF TRANSLATIONAL MEDICINE, 2020, 18 (01)
[9]   Interactions of the Receptor Binding Domain of SARS-CoV-2 Variants with hACE2: Insights from Molecular Docking Analysis and Molecular Dynamic Simulation [J].
Celik, Ismail ;
Yadav, Rohitash ;
Duzgun, Zekeriya ;
Albogami, Sarah ;
El-Shehawi, Ahmed M. ;
Fatimawali, Fatimawali ;
Idroes, Rinaldi ;
Tallei, Trina Ekawati ;
Bin Emran, Talha .
BIOLOGY-BASEL, 2021, 10 (09)
[10]   In silico evaluation of potential inhibitory activity of remdesivir, favipiravir, ribavirin and galidesivir active forms on SARS-CoV-2 RNA polymerase [J].
Celik, Ismail ;
Erol, Meryem ;
Duzgun, Zekeriya .
MOLECULAR DIVERSITY, 2022, 26 (01) :279-292