Solving mirrored traveling tournament problem benchmark instances with eight teams

被引:11
作者
Cheung, K. K. H. [1 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
traveling tournament; integer programming; one-factorization; sports scheduling;
D O I
10.1016/j.disopt.2007.11.003
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A two-phase method based on generating timetables from one-factorizations and finding optimal home/away assignments solved the mirrored traveling tournament problem benchmark instances NL8 and CIRC8 at the Challenge Traveling Tournament Problems homepage http://mat.gsia.cmu.edu/TOURN/. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:138 / 143
页数:6
相关论文
共 16 条
  • [1] A simulated annealing approach to the traveling tournament problem
    Anagnostopoulos, A
    Michel, L
    Van Hentenryck, P
    Vergados, Y
    [J]. JOURNAL OF SCHEDULING, 2006, 9 (02) : 177 - 193
  • [2] Benoist T, 2001, P 3 INT WORKSH INT A, P15
  • [3] Dickson L. E., 1906, AM MATH MONTHLY, V13, P150
  • [4] Dinitz J.H., 1994, J COMB DES, V2, P273
  • [5] Easton K, 2003, LECT NOTES COMPUT SC, V2740, P100
  • [6] Easton K., 2001, LECT NOTES COMPUTER, V2239, P580
  • [7] FUJIWARA N, 2006, P 6 INT C PRACT THEO, P402
  • [8] GELLING EN, 1974, C NUMER, V9, P213
  • [9] HENTENRYCK PV, 2006, LECT NOTES COMPUTER, V3990, P228
  • [10] A simulated annealing and hill-climbing algorithm for the traveling tournament problem
    Lim, A.
    Rodrigues, B.
    Zhang, X.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 174 (03) : 1459 - 1478