Deep Learning for Explainable Estimation of Mortality Risk From Myocardial Positron Emission Tomography Images

被引:23
作者
Singh, Ananya [1 ,2 ]
Kwiecinski, Jacek [1 ,2 ,3 ]
Miller, Robert J. H. [1 ,2 ,4 ]
Otaki, Yuka [1 ,2 ]
Kavanagh, Paul B. [1 ,2 ]
Van Kriekinge, Serge D. [1 ,2 ]
Parekh, Tejas [1 ,2 ]
Gransar, Heidi [1 ,2 ]
Pieszko, Konrad [1 ,2 ,5 ]
Killekar, Aditya [1 ,2 ]
Tummala, Ramyashree [1 ,2 ]
Liang, Joanna X. [1 ,2 ]
Di Carli, Marcelo F. [6 ]
Berman, Daniel S. [1 ,2 ]
Dey, Damini [1 ,2 ]
Slomka, Piotr J. [1 ,2 ]
机构
[1] Cedars Sinai Med Ctr, Dept Med, Div Artificial Intelligence Med, 8700 Beverly Blvd,Ste Metro 203, Los Angeles, CA 90048 USA
[2] Cedars Sinai Med Ctr, Dept Imaging & Biomed Sci, Los Angeles, CA 90048 USA
[3] Inst Cardiol, Dept Intervent Cardiol & Angiol, Warsaw, Poland
[4] Univ Calgary, Dept Cardiac Sci, Calgary, AB, Canada
[5] Univ Zielona Gora, Coll Med, Dept Intervent Cardiol & Cardiac Surg, Zielona Gora, Poland
[6] Brigham & Womens Hosp, Dept Radiol, Div Nucl Med & Mol Imaging, 75 Francis St, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
artificial intelligence; coronary artery disease; deep learning; myocardial perfusion imaging; positron emission tomography; CORONARY FLOW RESERVE; SURVIVAL BENEFIT; CARDIOVASCULAR RISK; MEDICAL THERAPY; STRESS; ISCHEMIA; ANGIOGRAPHY; OUTCOMES; COUNCIL; IMPACT;
D O I
10.1161/CIRCIMAGING.122.014526
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: We aim to develop an explainable deep learning (DL) network for the prediction of all-cause mortality directly from positron emission tomography myocardial perfusion imaging flow and perfusion polar map data and evaluate it using prospective testing. Methods: A total of 4735 consecutive patients referred for stress and rest Rb-82 positron emission tomography between 2010 and 2018 were followed up for all-cause mortality for 4.15 (2.24-6.3) years. DL network utilized polar maps of stress and rest perfusion, myocardial blood flow, myocardial flow reserve, and spill-over fraction combined with cardiac volumes, singular indices, and sex. Patients scanned from 2010 to 2016 were used for training and validation. The network was tested in a set of 1135 patients scanned from 2017 to 2018 to simulate prospective clinical implementation. Results: In prospective testing, the area under the receiver operating characteristic curve for all-cause mortality prediction by DL (0.82 [95% CI, 0.77-0.86]) was higher than ischemia (0.60 [95% CI, 0.54-0.66]; P <0.001), myocardial flow reserve (0.70 [95% CI, 0.64-0.76], P <0.001) or a comprehensive logistic regression model (0.75 [95% CI, 0.69-0.80], P <0.05). The highest quartile of patients by DL had an annual all-cause mortality rate of 11.87% and had a 16.8 ([95% CI, 6.12%-46.3%]; P <0.001)-fold increase in the risk of death compared with the lowest quartile patients. DL showed a 21.6% overall reclassification improvement as compared with established measures of ischemia. Conclusions: The DL model trained directly on polar maps allows improved patient risk stratification in comparison with established methods for positron emission tomography flow or perfusion assessments.
引用
收藏
页码:645 / 655
页数:11
相关论文
共 35 条
[1]   Left ventricular shape index assessed by gated stress myocardial perfusion SPECT: Initial description of a new variable [J].
Abidov, Aiden ;
Slomka, Piotr J. ;
Nishina, Hidetaka ;
Hayes, Sean W. ;
Kang, Xingping ;
Yoda, Shunichl ;
Yang, Ling-De ;
Gerlach, James ;
Aboul-Enein, Fatma ;
Cohen, Ishac ;
Friedman, John D. ;
Kavanagh, Paul B. ;
Germano, Guido ;
Berman, Daniel S. .
JOURNAL OF NUCLEAR CARDIOLOGY, 2006, 13 (05) :652-659
[2]   Impact of Early Revascularization on Major Adverse Cardiovascular Events in Relation to Automatically Quantified Ischemia [J].
Azadani, Peyman N. ;
Miller, Robert J. H. ;
Sharir, Tali ;
Diniz, Marcio A. ;
Hu, Lien-Hsin ;
Otaki, Yuka ;
Gransar, Heidi ;
Liang, Joanna X. ;
Eisenberg, Evann ;
Einstein, Andrew J. ;
Fish, Mathews B. ;
Ruddy, Terrence D. ;
Kaufmann, Philipp A. ;
Sinusas, Albert J. ;
Miller, Edward J. ;
Bateman, Timothy M. ;
Dorbala, Sharmila ;
Di Carli, Marcelo ;
Tamarappoo, Balaji K. ;
Dey, Damini ;
Berman, Daniel S. ;
Slomka, Piotr J. .
JACC-CARDIOVASCULAR IMAGING, 2021, 14 (03) :644-653
[3]  
Cerqueira MD, 2002, INT J CARDIOVAS IMAG, V18, P539
[4]   CT-free attenuation correction for dedicated cardiac SPECT using a 3D dual squeeze-and-excitation residual dense network [J].
Chen, Xiongchao ;
Zhou, Bo ;
Shi, Luyao ;
Liu, Hui ;
Pang, Yulei ;
Wang, Rui ;
Miller, Edward J. ;
Sinusas, Albert J. ;
Liu, Chi .
JOURNAL OF NUCLEAR CARDIOLOGY, 2022, 29 (05) :2235-2250
[5]   Multisoftware Reproducibility Study of Stress and Rest Myocardial Blood Flow Assessed with 3D Dynamic PET/CT and a 1-Tissue-Compartment Model of 82Rb Kinetics [J].
deKemp, Robert A. ;
Declerck, Jerome ;
Klein, Ran ;
Pan, Xiao-Bo ;
Nakazato, Ryo ;
Tonge, Christine ;
Arumugam, Parthiban ;
Berman, Daniel S. ;
Germano, Guido ;
Beanlands, Rob S. ;
Slomka, Piotr J. .
JOURNAL OF NUCLEAR MEDICINE, 2013, 54 (04) :571-577
[6]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[7]   Artificial Intelligence in Cardiovascular Imaging JACC State-of-the-Art Review [J].
Dey, Damini ;
Slomka, Piotr J. ;
Leeson, Paul ;
Comaniciu, Dorin ;
Shrestha, Sirish ;
Sengupta, Partho P. ;
Marwick, Thomas H. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (11) :1317-1335
[8]   Comparison of Coronary Computed Tomography Angiography, Fractional Flow Reserve, and Perfusion Imaging for Ischemia Diagnosis [J].
Driessen, Roel S. ;
Danad, Ibrahim ;
Stuijfzand, Wijnand J. ;
Raijmakers, Pieter G. ;
Schumacher, Stefan P. ;
van Diemen, Pepijn A. ;
Leipsic, Jonathon A. ;
Knuuti, Juhani ;
Underwood, S. Richard ;
van de Ven, Peter M. ;
van Rossum, Albert C. ;
Taylor, Charles A. ;
Knaapen, Paul .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (02) :161-173
[9]   Mortality Prediction by Quantitative PET Perfusion Expressed as Coronary Flow Capacity With and Without Revascularization [J].
Gould, K. Lance ;
Kitkungvan, Danai ;
Johnson, Nils P. ;
Nguyen, Tung ;
Kirkeeide, Richard ;
Bui, Linh ;
Patel, Monica B. ;
Roby, Amanda E. ;
Madjid, Mohammad ;
Zhu, Hongjian ;
Lai, Dejian .
JACC-CARDIOVASCULAR IMAGING, 2021, 14 (05) :1020-1034
[10]  
Gould KL, 2018, J AM COLL CARDIOL, V72, P2643, DOI 10.1016/j.jacc.2018.07.106