A Chevalley formula for the equivariant quantum K-theory of cominuscule varieties

被引:18
|
作者
Buch, Anders S. [1 ]
Chaput, Pierre-Emmanuel [2 ]
Mihalcea, Leonardo C. [3 ]
Perrin, Nicolas [4 ]
机构
[1] Rutgers State Univ, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Univ Lorraine, Domaine Sci Victor Grignard, 239 Blvd Aiguillettes,BP 70239, F-54506 Vandoeuvre Les Nancy, France
[3] Virginia Tech Univ, Dept Math, 460 McBryde, Blacksburg, VA 24060 USA
[4] Univ Paris Saclay, CNRS, UVSQ, Lab Math Versailles, F-78035 Versailles, France
来源
ALGEBRAIC GEOMETRY | 2018年 / 5卷 / 05期
关键词
quantum k-theory; Chevalley formula; Gromov-Witten invariants; Schubert structure constants; cominuscule flag varieties; Molev-Sagan equations; COHOMOLOGY; POSITIVITY; PUZZLES; RING;
D O I
10.14231/AG-2018-015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a type-uniform Chevalley formula for multiplication with divisor classes in the equivariant quantum K-theory ring of any cominuscule flag variety G/P. We also prove that multiplication with divisor classes determines the equivariant quantum K-theory of arbitrary flag varieties. These results prove a conjecture of Gorbounov and Korff concerning the equivariant quantum K-theory of Grassmannians of Lie type A.
引用
收藏
页码:568 / 595
页数:28
相关论文
共 50 条
  • [41] EQUIVARIANT K-THEORY FOR CURVES
    ELLINGSRUD, G
    LONSTED, K
    DUKE MATHEMATICAL JOURNAL, 1984, 51 (01) : 37 - 46
  • [42] EQUIVARIANT K-THEORY OF RINGS
    DAVYDOV, AA
    RUSSIAN MATHEMATICAL SURVEYS, 1991, 46 (04) : 167 - 168
  • [43] EQUIVARIANT CONNECTIVE K-THEORY
    Karpenko, Nikita A.
    Merkurjev, Alexander S.
    JOURNAL OF ALGEBRAIC GEOMETRY, 2022, 31 (01) : 181 - 204
  • [44] EQUIVARIANT COMMUNICATION K-THEORY
    DAVYDOV, AA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1991, (06): : 90 - 93
  • [45] EQUIVARIANT ALGEBRAIC K-THEORY
    FIEDOROWICZ, Z
    HAUSCHILD, H
    MAY, JP
    LECTURE NOTES IN MATHEMATICS, 1982, 967 : 23 - 80
  • [46] K-theory of equivariant quantization
    Tang, Xiang
    Yao, Yi-Jun
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (02) : 478 - 486
  • [47] Equivariant K-Theory Approach to i-Quantum Groups
    Fan, Zhaobing
    Ma, Haitao
    Xiao, Husileng
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2022, 58 (03) : 635 - 668
  • [48] Quantum affine algebras at roots of unity and equivariant K-theory
    Schiffmann, O
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (05): : 433 - 438
  • [49] MAYER-VIETORIS SEQUENCES AND EQUIVARIANT K-THEORY RINGS OF TORIC VARIETIES
    Holm, Tara S.
    Williams, Gareth
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2019, 21 (01) : 375 - 401
  • [50] Euler characteristics in the quantum K-theory of flag varieties
    Anders S. Buch
    Sjuvon Chung
    Changzheng Li
    Leonardo C. Mihalcea
    Selecta Mathematica, 2020, 26