A Chevalley formula for the equivariant quantum K-theory of cominuscule varieties

被引:18
|
作者
Buch, Anders S. [1 ]
Chaput, Pierre-Emmanuel [2 ]
Mihalcea, Leonardo C. [3 ]
Perrin, Nicolas [4 ]
机构
[1] Rutgers State Univ, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Univ Lorraine, Domaine Sci Victor Grignard, 239 Blvd Aiguillettes,BP 70239, F-54506 Vandoeuvre Les Nancy, France
[3] Virginia Tech Univ, Dept Math, 460 McBryde, Blacksburg, VA 24060 USA
[4] Univ Paris Saclay, CNRS, UVSQ, Lab Math Versailles, F-78035 Versailles, France
来源
ALGEBRAIC GEOMETRY | 2018年 / 5卷 / 05期
关键词
quantum k-theory; Chevalley formula; Gromov-Witten invariants; Schubert structure constants; cominuscule flag varieties; Molev-Sagan equations; COHOMOLOGY; POSITIVITY; PUZZLES; RING;
D O I
10.14231/AG-2018-015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a type-uniform Chevalley formula for multiplication with divisor classes in the equivariant quantum K-theory ring of any cominuscule flag variety G/P. We also prove that multiplication with divisor classes determines the equivariant quantum K-theory of arbitrary flag varieties. These results prove a conjecture of Gorbounov and Korff concerning the equivariant quantum K-theory of Grassmannians of Lie type A.
引用
收藏
页码:568 / 595
页数:28
相关论文
共 50 条
  • [31] Pieri rules for the K-theory of cominuscule Grassmannians
    Buch, Anders Skovsted
    Ravikumar, Vijay
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 668 : 109 - 132
  • [32] Quantum group actions on rings and equivariant K-theory
    Lehrer, G. I.
    Zhang, R. B.
    ALGEBRAIC GROUPS AND QUANTUM GROUPS, 2012, 565 : 115 - 141
  • [33] The Log Product Formula in Quantum K-theory
    Chou, You-Cheng
    Herr, Leo
    Lee, Yuan-Pin
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2023, 175 (02) : 225 - 252
  • [34] Equivariant formality in K-theory
    Fok, Chi-Kwong
    NEW YORK JOURNAL OF MATHEMATICS, 2019, 25 : 315 - 327
  • [35] A Pieri-Chevalley formula in the K-theory of a G/B-bundle
    Pittie, H
    Ram, A
    ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 5 : 102 - 107
  • [36] EQUIVARIANT K-THEORY OF GRASSMANNIANS
    Pechenik, Oliver
    Yong, Alexander
    FORUM OF MATHEMATICS PI, 2017, 5
  • [37] Rigidity for equivariant K-theory
    Yagunov, Serge
    Ostvaer, Paul Arne
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (23-24) : 1403 - 1407
  • [38] LOWER EQUIVARIANT K-THEORY
    SVENSSON, JA
    MATHEMATICA SCANDINAVICA, 1987, 60 (02) : 179 - 201
  • [39] Equivariant representable K-theory
    Emerson, Heath
    Meyer, Ralf
    JOURNAL OF TOPOLOGY, 2009, 2 (01) : 123 - 156
  • [40] THE SPECTRUM OF EQUIVARIANT K-THEORY
    BOJANOWSKA, A
    MATHEMATISCHE ZEITSCHRIFT, 1983, 183 (01) : 1 - 19