A Chevalley formula for the equivariant quantum K-theory of cominuscule varieties

被引:18
|
作者
Buch, Anders S. [1 ]
Chaput, Pierre-Emmanuel [2 ]
Mihalcea, Leonardo C. [3 ]
Perrin, Nicolas [4 ]
机构
[1] Rutgers State Univ, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Univ Lorraine, Domaine Sci Victor Grignard, 239 Blvd Aiguillettes,BP 70239, F-54506 Vandoeuvre Les Nancy, France
[3] Virginia Tech Univ, Dept Math, 460 McBryde, Blacksburg, VA 24060 USA
[4] Univ Paris Saclay, CNRS, UVSQ, Lab Math Versailles, F-78035 Versailles, France
来源
ALGEBRAIC GEOMETRY | 2018年 / 5卷 / 05期
关键词
quantum k-theory; Chevalley formula; Gromov-Witten invariants; Schubert structure constants; cominuscule flag varieties; Molev-Sagan equations; COHOMOLOGY; POSITIVITY; PUZZLES; RING;
D O I
10.14231/AG-2018-015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a type-uniform Chevalley formula for multiplication with divisor classes in the equivariant quantum K-theory ring of any cominuscule flag variety G/P. We also prove that multiplication with divisor classes determines the equivariant quantum K-theory of arbitrary flag varieties. These results prove a conjecture of Gorbounov and Korff concerning the equivariant quantum K-theory of Grassmannians of Lie type A.
引用
收藏
页码:568 / 595
页数:28
相关论文
共 50 条