A Chevalley formula for the equivariant quantum K-theory of cominuscule varieties

被引:18
|
作者
Buch, Anders S. [1 ]
Chaput, Pierre-Emmanuel [2 ]
Mihalcea, Leonardo C. [3 ]
Perrin, Nicolas [4 ]
机构
[1] Rutgers State Univ, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Univ Lorraine, Domaine Sci Victor Grignard, 239 Blvd Aiguillettes,BP 70239, F-54506 Vandoeuvre Les Nancy, France
[3] Virginia Tech Univ, Dept Math, 460 McBryde, Blacksburg, VA 24060 USA
[4] Univ Paris Saclay, CNRS, UVSQ, Lab Math Versailles, F-78035 Versailles, France
来源
ALGEBRAIC GEOMETRY | 2018年 / 5卷 / 05期
关键词
quantum k-theory; Chevalley formula; Gromov-Witten invariants; Schubert structure constants; cominuscule flag varieties; Molev-Sagan equations; COHOMOLOGY; POSITIVITY; PUZZLES; RING;
D O I
10.14231/AG-2018-015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a type-uniform Chevalley formula for multiplication with divisor classes in the equivariant quantum K-theory ring of any cominuscule flag variety G/P. We also prove that multiplication with divisor classes determines the equivariant quantum K-theory of arbitrary flag varieties. These results prove a conjecture of Gorbounov and Korff concerning the equivariant quantum K-theory of Grassmannians of Lie type A.
引用
收藏
页码:568 / 595
页数:28
相关论文
共 50 条
  • [1] A chevalley formula in equivariant K-theory
    Willems, Matthieu
    JOURNAL OF ALGEBRA, 2007, 308 (02) : 764 - 779
  • [2] FINITENESS OF COMINUSCULE QUANTUM K-THEORY
    Buch, Anders S.
    Chaput, Pierre-Emmanuel
    Mihalcea, Leonardo C.
    Perrin, Nicolas
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2013, 46 (03): : 477 - 494
  • [3] Euler characteristics of cominuscule quantum K-theory
    Buch, Anders S.
    Chung, Sjuvon
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 97 : 145 - 148
  • [4] Richardson varieties and equivariant K-theory
    Lakshmibai, V
    Littelmann, P
    JOURNAL OF ALGEBRA, 2003, 260 (01) : 230 - 260
  • [5] The equivariant K-theory of toric varieties
    Au, Suanne
    Huang, Mu-Wan
    Walker, Mark E.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (05) : 840 - 845
  • [6] Equivariant K-theory of Springer varieties
    Uma, Vikraman
    TOPOLOGY AND ITS APPLICATIONS, 2024, 342
  • [7] EQUIVARIANT K-THEORY OF SEMI-INFINITE FLAG MANIFOLDS AND THE PIERI-CHEVALLEY FORMULA
    Kato, Syu
    Naito, Satoshi
    Sagaki, Daisuke
    DUKE MATHEMATICAL JOURNAL, 2020, 169 (13) : 2421 - 2500
  • [8] Equivariant K-theory of smooth toric varieties
    Baggio, Silvano
    TOHOKU MATHEMATICAL JOURNAL, 2007, 59 (02) : 203 - 231
  • [9] LEFSCHETZ FORMULA IN ALGEBRAIC EQUIVARIANT K-THEORY
    THOMASON, RW
    DUKE MATHEMATICAL JOURNAL, 1992, 68 (03) : 447 - 462
  • [10] EQUIVARIANT K-THEORY OF GENERALIZED STEINBERG VARIETIES
    Douglass, J. Matthew
    Roehrle, Gerhard
    TRANSFORMATION GROUPS, 2014, 19 (01) : 27 - 56