Principal component analysis and clustering on manifolds
被引:7
|
作者:
V. Mardia, Kanti
论文数: 0引用数: 0
h-index: 0
机构:
Univ Leeds, Sch Math, Dept Stat, Leeds LS2 9JT, W Yorkshire, England
Univ Oxford, Dept Stat, Oxford OX1 3LB, EnglandUniv Leeds, Sch Math, Dept Stat, Leeds LS2 9JT, W Yorkshire, England
V. Mardia, Kanti
[1
,2
]
Wiechers, Henrik
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Augusta Univ, Felix Bernstein Inst Math Stat Biosci, D-37077 Gottingen, GermanyUniv Leeds, Sch Math, Dept Stat, Leeds LS2 9JT, W Yorkshire, England
Wiechers, Henrik
[3
]
Eltzner, Benjamin
论文数: 0引用数: 0
h-index: 0
机构:
Max Planck Inst Biophys Chem, D-37077 Gottingen, GermanyUniv Leeds, Sch Math, Dept Stat, Leeds LS2 9JT, W Yorkshire, England
Eltzner, Benjamin
[4
]
Huckemann, Stephan F.
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Augusta Univ, Felix Bernstein Inst Math Stat Biosci, D-37077 Gottingen, GermanyUniv Leeds, Sch Math, Dept Stat, Leeds LS2 9JT, W Yorkshire, England
Huckemann, Stephan F.
[3
]
机构:
[1] Univ Leeds, Sch Math, Dept Stat, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Oxford, Dept Stat, Oxford OX1 3LB, England
[3] Georgia Augusta Univ, Felix Bernstein Inst Math Stat Biosci, D-37077 Gottingen, Germany
[4] Max Planck Inst Biophys Chem, D-37077 Gottingen, Germany
Big data, high dimensional data, sparse data, large scale data, and imaging data are all becoming new frontiers of statistics. Changing technologies have created this flood and have led to a real hunger for new modeling strategies and data analysis by scientists. In many cases data are not Euclidean; for example, in molecular biology, the data sit on manifolds. Even in a simple non-Euclidean manifold (circle), to summarize angles by the arithmetic average cannot make sense and so more care is needed. Thus non-Euclidean settings throw up many major challenges, both mathematical and statistical. This paper will focus on the PCA and clustering methods for some manifolds. Of course, the PCA and clustering methods in multivariate analysis are one of the core topics. We basically deal with two key manifolds from a practical point of view, namely spheres and tori. It is well known that dimension reduction on non-Euclidean manifolds with PCA-like methods has been a challenging task for quite some time but recently there has been some breakthrough. One of them is the idea of nested spheres and another is transforming a torus into a sphere effectively and subsequently use the technology of nested spheres PCA. We also provide a new method of clustering for multivariate analysis which has a fundamental property required for molecular biology that penalizes wrong assignments to avoid chemically no go areas. We give various examples to illustrate these methods. One of the important examples includes dealing with COVID-19 data.
机构:
South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R ChinaSouth China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
Han, Le
Wu, Zhen
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R ChinaSouth China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
Wu, Zhen
Zeng, Kui
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R ChinaSouth China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
Zeng, Kui
Yang, Xiaowei
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Software Engn, Guangzhou 510006, Guangdong, Peoples R ChinaSouth China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
机构:
Yunnan Univ Finance & Econ, Sch Math & Stat, Kunming 650221, Peoples R ChinaYunnan Univ Finance & Econ, Sch Math & Stat, Kunming 650221, Peoples R China
Zhao, Jianhua
Yu, Philip L. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R ChinaYunnan Univ Finance & Econ, Sch Math & Stat, Kunming 650221, Peoples R China
Yu, Philip L. H.
Kwok, James T.
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Kowloon, Hong Kong, Peoples R ChinaYunnan Univ Finance & Econ, Sch Math & Stat, Kunming 650221, Peoples R China
机构:
Columbia Univ, Dept Biostat, 722W 178 St, New York, NY 10032 USA
Univ Carlos III Madrid, uc3m Santander Big Data Inst, C Madrid,126, Madrid 28903, SpainColumbia Univ, Dept Biostat, 722W 178 St, New York, NY 10032 USA
Mendez-Civieta, Alvaro
Wei, Ying
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Biostat, 722W 178 St, New York, NY 10032 USAColumbia Univ, Dept Biostat, 722W 178 St, New York, NY 10032 USA
Wei, Ying
Diaz, Keith M.
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Med, 161 Ft Washington Ave, New York, NY 10032 USAColumbia Univ, Dept Biostat, 722W 178 St, New York, NY 10032 USA
Diaz, Keith M.
Goldsmith, Jeff
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Biostat, 722W 178 St, New York, NY 10032 USAColumbia Univ, Dept Biostat, 722W 178 St, New York, NY 10032 USA