Principal component analysis and clustering on manifolds

被引:7
|
作者
V. Mardia, Kanti [1 ,2 ]
Wiechers, Henrik [3 ]
Eltzner, Benjamin [4 ]
Huckemann, Stephan F. [3 ]
机构
[1] Univ Leeds, Sch Math, Dept Stat, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Oxford, Dept Stat, Oxford OX1 3LB, England
[3] Georgia Augusta Univ, Felix Bernstein Inst Math Stat Biosci, D-37077 Gottingen, Germany
[4] Max Planck Inst Biophys Chem, D-37077 Gottingen, Germany
关键词
Adaptive linkage clustering; Circular mode hunting; Dimension reduction; Multivariate wrapped normal; SARS-CoV-2; geometry; Stratified spheres; Torus PCA; CHALLENGES; STATISTICS; INFERENCE; SIZER;
D O I
10.1016/j.jmva.2021.104862
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Big data, high dimensional data, sparse data, large scale data, and imaging data are all becoming new frontiers of statistics. Changing technologies have created this flood and have led to a real hunger for new modeling strategies and data analysis by scientists. In many cases data are not Euclidean; for example, in molecular biology, the data sit on manifolds. Even in a simple non-Euclidean manifold (circle), to summarize angles by the arithmetic average cannot make sense and so more care is needed. Thus non-Euclidean settings throw up many major challenges, both mathematical and statistical. This paper will focus on the PCA and clustering methods for some manifolds. Of course, the PCA and clustering methods in multivariate analysis are one of the core topics. We basically deal with two key manifolds from a practical point of view, namely spheres and tori. It is well known that dimension reduction on non-Euclidean manifolds with PCA-like methods has been a challenging task for quite some time but recently there has been some breakthrough. One of them is the idea of nested spheres and another is transforming a torus into a sphere effectively and subsequently use the technology of nested spheres PCA. We also provide a new method of clustering for multivariate analysis which has a fundamental property required for molecular biology that penalizes wrong assignments to avoid chemically no go areas. We give various examples to illustrate these methods. One of the important examples includes dealing with COVID-19 data.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Online multilinear principal component analysis
    Han, Le
    Wu, Zhen
    Zeng, Kui
    Yang, Xiaowei
    NEUROCOMPUTING, 2018, 275 : 888 - 896
  • [22] A survey of functional principal component analysis
    Han Lin Shang
    AStA Advances in Statistical Analysis, 2014, 98 : 121 - 142
  • [23] Bilinear Probabilistic Principal Component Analysis
    Zhao, Jianhua
    Yu, Philip L. H.
    Kwok, James T.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (03) : 492 - 503
  • [24] Functional quantile principal component analysis
    Mendez-Civieta, Alvaro
    Wei, Ying
    Diaz, Keith M.
    Goldsmith, Jeff
    BIOSTATISTICS, 2024,
  • [25] Principal component analysis for α-stable vectors
    Mohammadi, Mohammad
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (09) : 5245 - 5263
  • [26] Hierarchical disjoint principal component analysis
    Cavicchia, Carlo
    Vichi, Maurizio
    Zaccaria, Giorgia
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2023, 107 (03) : 537 - 574
  • [27] Efficient fair principal component analysis
    Kamani, Mohammad Mahdi
    Haddadpour, Farzin
    Forsati, Rana
    Mahdavi, Mehrdad
    MACHINE LEARNING, 2022, 111 (10) : 3671 - 3702
  • [28] Hierarchical disjoint principal component analysis
    Carlo Cavicchia
    Maurizio Vichi
    Giorgia Zaccaria
    AStA Advances in Statistical Analysis, 2023, 107 : 537 - 574
  • [29] Local Functional Principal Component Analysis
    Mas, Andre
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2008, 2 (01) : 135 - 167
  • [30] Principal Component Regression by Principal Component Selection
    Lee, Hosung
    Park, Yun Mi
    Lee, Seokho
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2015, 22 (02) : 173 - 180