Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method

被引:176
作者
Roque, C. M. C. [2 ]
Ferreira, A. J. M. [1 ]
Reddy, J. N. [3 ]
机构
[1] Univ Porto, Dept Engn Mecan, Fac Engn, P-4200465 Oporto, Portugal
[2] Univ Porto, INEGI, Fac Engn, P-4200465 Oporto, Portugal
[3] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA
关键词
Nanobeams; Meshless methods; Nonlocal theory; EQUATIONS;
D O I
10.1016/j.ijengsci.2011.05.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The nonlocal elasticity theory of Eringen is used to study bending, buckling and free Vibration of Timoshenko nanobeams. A meshless method is used to obtain numerical solutions. Results are compared with available analytical solutions. Two different collocation techniques, global (RBF) and local (RBF-FD). are used with multi-quadrics radial basis functions. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:976 / 984
页数:9
相关论文
共 23 条
[11]   Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates [J].
Phadikar, J. K. ;
Pradhan, S. C. .
COMPUTATIONAL MATERIALS SCIENCE, 2010, 49 (03) :492-499
[12]  
Pisano AA, 2003, INT J SOLIDS STRUCT, V40, P13, DOI 10.1016/S0020-7683(02)00547-4
[13]   Nonlocal theories for bending, buckling and vibration of beams [J].
Reddy, J. N. .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2007, 45 (2-8) :288-307
[14]   Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates [J].
Reddy, J. N. .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2010, 48 (11) :1507-1518
[15]  
Reddy J.N., 2002, Energy Principles and Variational Methods in Applied Mechanics
[16]   Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier-Stokes equations [J].
Shu, C ;
Ding, H ;
Yeo, KS .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (7-8) :941-954
[17]  
Sinha N., 2009, 15th International Conference on Solid-State Sensors, Actuators and Microsystems. Transducers 2009, P469, DOI 10.1109/SENSOR.2009.5285460
[18]   Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics [J].
Sudak, LJ .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (11) :7281-7287
[19]  
Tolstykh AI, 2003, ARCH MECH, V55, P531
[20]   Beam bending solutions based on nonlocal Timoshenko beam theory [J].
Wang, C. M. ;
Kitipomchai, S. ;
Lim, C. W. ;
Eisenberger, M. .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 2008, 134 (06) :475-481