Some edge-fault-tolerant properties of the folded hypercube

被引:42
作者
Hsieh, Sun-Yuan [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan 70101, Taiwan
关键词
graph-theoretical interconnection networks; folded hypercubes; fault-tolerant embedding; Hamiltonian; Hamiltonian-connected; strongly Hamiltonian-laceable; hyper Hamiltonian-laceable;
D O I
10.1002/net.20204
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we analyze some edge-fault-tolerant properties of the folded hypercube, a variant of the regular hypercube that is obtained by adding an edge to every pair of nodes with complementary addresses. We show that an n-dimensional folded hypercube is (n - 2)edge-fault-tolerant Hamiltonian-connected when n(>= 2) is even, (n - 1)-edge-fault-tolerant strongly Hamiltonian-laceable when n(>= 1) is odd, and (n - 2)-edge-fault-tolerant hyper Hamiltonian-laceable when n(>= 3) is odd. (c) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:92 / 101
页数:10
相关论文
共 24 条
  • [1] AKERS SB, 1987, P INT C PAR PROC ST, P555
  • [2] Akl S.G., 1997, Parallel Computation: Models and Methods
  • [3] ASCHEUER N, 1995, THESIS U TECHNOLOGY
  • [4] BERMOND JC, 1992, DISCRETE APPL MATH, V37
  • [5] BHUYAN LN, 1984, IEEE T COMPUT, V33, P323, DOI 10.1109/TC.1984.1676437
  • [6] PROPERTIES AND PERFORMANCE OF FOLDED HYPERCUBES
    ELAMAWY, A
    LATIFI, S
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1991, 2 (01) : 31 - 42
  • [7] THE TWISTED N-CUBE WITH APPLICATION TO MULTIPROCESSING
    ESFAHANIAN, AH
    NI, LM
    SAGAN, BE
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1991, 40 (01) : 88 - 93
  • [8] Hamiltonicity of the hierarchical cubic network
    Fu, JS
    Chen, GH
    [J]. THEORY OF COMPUTING SYSTEMS, 2002, 35 (01) : 59 - 79
  • [9] Fault-free Hamiltonian cycles in faulty arrangement graphs
    Hsieh, SY
    Chen, GH
    Ho, CW
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1999, 10 (03) : 223 - 237
  • [10] Hsieh SY, 2000, NETWORKS, V36, P225, DOI 10.1002/1097-0037(200012)36:4<225::AID-NET3>3.0.CO