Estimations of psi function and harmonic numbers

被引:7
作者
Elezovic, Neven [1 ]
机构
[1] Univ Zagreb, Fac Elect Engn & Comp, Zagreb 10000, Croatia
关键词
Asymptotic expansion; Digamma function; Euler constant; Harmonic numbers; Exponential function; Approximation; BOUNDS;
D O I
10.1016/j.amc.2015.02.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
asymptotic expansion of digamma function is a starting point for the derivation of approximants for harmonic sums or Euler-Mascheroni constant. It is usual to derive such approximations as values of logarithmic function, which leads to the expansion of the exponentials of digamma function. In this paper the asymptotic expansion of the function exp(p psi(x + t)) is derived and analyzed in details, especially for integer values of parameter p. The behavior for integer values of p is proved and as a consequence a new identity for Bernoulli polynomials. The obtained formulas are used to improve know inequalities for Euler's constant and harmonic numbers. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:192 / 205
页数:14
相关论文
共 11 条
[1]  
Batir Necdet, 2012, Proyecciones (Antofagasta), V31, P29
[2]   SHARP BOUNDS FOR THE PSI FUNCTION AND HARMONIC NUMBERS [J].
Batir, Necdet .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (04) :917-925
[3]  
Buric T., 2012, INTEGRAL TRANSFORMS, V23, P335
[4]   ASYMPTOTIC EXPANSIONS OF THE MULTIPLE QUOTIENTS OF GAMMA FUNCTIONS WITH APPLICATIONS [J].
Buric, Tomislav ;
Elezovic, Neven ;
Simic, Ratko .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (04) :1159-1170
[5]   Bernoulli polynomials and asymptotic expansions of the quotient of gamma functions [J].
Buric, Tomislav ;
Elezovic, Neven .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (11) :3315-3331
[6]  
Chen C.-P., 2013, J. Class. Anal., V2, P151
[7]   New sequence converging towards the Euler-Mascheroni constant [J].
Chen, Chao-Ping ;
Mortici, Cristinel .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (04) :391-398
[8]   The best bounds in Gautschi's inequality [J].
Elezovic, N ;
Giordano, C ;
Pecaric, J .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2000, 3 (02) :239-252
[9]  
Gould H.W., 1978, AM MATH MONTHLY, V85, P84
[10]   On new sequences converging towards the Euler-Mascheroni constant [J].
Mortici, Cristinel .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (08) :2610-2614