One-parameter semigroups of analytic functions, fixed points and the Koenigs function

被引:15
作者
Goryainov, V. V. [1 ]
Kudryavtseva, O. S. [1 ]
机构
[1] Volgograd State Univ, Volzhskii Humanities Inst, Volzhskii, Volgograd Reg, Russia
关键词
one-parameter semigroup; infinitesimal generator; fixed points; fractional iterates; Koenigs function; ITERATION;
D O I
10.1070/SM2011v202n07ABEH004173
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Analogues of the Berkson-Porta formula for the infinitesimal generator of a one-parameter semigroup of holomorphic maps of the unit disc into itself are obtained in the case when, along with a Denjoy-Wolff point, there also exist other fixed points. With each one-parameter semigroup a so-called Koenigs function is associated, which is a solution, common for all elements of the one-parameter semigroup, of a certain functional equation (Schroder's equation in the case of an interior Denjoy-Wolff point and Abel's equation in the case of a boundary Denjoy-Wolff point). A parametric representation for classes of Koenigs functions that takes account of the Denjoy-Wolff point and other fixed points of the maps in the one-parameter semigroup is presented.
引用
收藏
页码:971 / 1000
页数:30
相关论文
共 19 条
[1]  
Ahlfors Lars V., 1973, Conformal Invariants: Topics in Geometric Function Theory
[2]  
[Anonymous], 1969, TRANSL MATH MONOGR
[3]  
[Anonymous], GRUNDLEHREN MATH WIS
[4]  
[Anonymous], 1993, UNIVERSITEXT TRACT
[5]  
[Anonymous], 1884, ANN SCI COLE NORM SU
[6]  
BAKER IN, 1979, J LOND MATH SOC, V20, P255
[7]  
BERKSON E, 1978, MICH MATH J, V25, P101
[8]  
Contreras MD, 2004, ANN ACAD SCI FENN-M, V29, P471
[9]  
Duren P.L., 1983, UNIVALENT FUNCTIONS, V259
[10]  
FRANZ U, 2005, INFIN DIMENS ANAL QU, V3, P37