About a question of Gateva-Ivanova and Cameron on square-free set-theoretic solutions of the Yang-Baxter equation

被引:5
作者
Castelli, Marco [1 ]
Catino, Francesco [1 ]
Pinto, Giuseppina [1 ]
机构
[1] Univ Salento, Dipartimento Matemat & Fis Ennio De Giorgi, Via Prov Lecce Arnesano, I-73100 Lecce, Italy
关键词
Yang-Baxter equation; set-theoretic solution; cycle set; EXTENSIONS;
D O I
10.1080/00927872.2020.1713328
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we introduce a new sequence to find a new estimation of the cardinality N-m of the minimal involutive square-free solution of level m. As an application, using the first values of we improve the estimations of N-m obtained by Gateva-Ivanova and Cameron and Lebed and Vendramin. Following the approach of the first part, in the last section we construct several new counterexamples to the Gateva-Ivanova's Conjecture.
引用
收藏
页码:2369 / 2381
页数:13
相关论文
共 19 条
[1]   A family of irretractable square-free solutions of the Yang-Baxter equation [J].
Bachiller, David ;
Cedo, Ferran ;
Jespers, Eric ;
Okninski, Jan .
FORUM MATHEMATICUM, 2017, 29 (06) :1291-1306
[2]   Indecomposable involutive set-theoretic solutions of the Yang-Baxter equation [J].
Castelli, M. ;
Catino, F. ;
Pinto, G. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (10) :4477-4493
[3]   A new family of set-theoretic solutions of the Yang-Baxter equation [J].
Castelli, M. ;
Catino, F. ;
Pinto, G. .
COMMUNICATIONS IN ALGEBRA, 2018, 46 (04) :1622-1629
[4]   Dynamical extensions of quasi-linear left cycle sets and the Yang-Baxter equation [J].
Castelli, Marco ;
Catino, Francesco ;
Miccoli, Maria Maddalena ;
Pinto, Giuseppina .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (11)
[5]   Construction of quasi-linear left cycle sets [J].
Catino, Francesco ;
Miccoli, Maria Maddalena .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (01)
[6]   Braces and the Yang-Baxter Equation [J].
Cedo, Ferran ;
Jespers, Eric ;
Okninski, Jan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 327 (01) :101-116
[7]   Retractability of set theoretic solutions of the Yang-Baxter equation [J].
Cedo, Ferran ;
Jespers, Eric ;
Okninski, Jan .
ADVANCES IN MATHEMATICS, 2010, 224 (06) :2472-2484
[8]  
DRINFELD VG, 1992, LECT NOTES MATH, V1510, P1
[9]   Set-theoretical solutions to the quantum Yang-Baxter equation [J].
Etingof, P ;
Schedler, T ;
Soloviev, A .
DUKE MATHEMATICAL JOURNAL, 1999, 100 (02) :169-209
[10]   A combinatorial approach to the set-theoretic solutions of the Yang-Baxter equation [J].
Gateva-Ivanova, T .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (10) :3828-3858