Optimal regularity of plurisubharmonic envelopes on compact Hermitian manifolds

被引:20
作者
Chu, Jianchun [1 ]
Zhou, Bin [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
complex Monge-Ampere equations; plurisubharmonic functions; envelopes; Hermitian manifolds; MONGE-AMPERE EQUATIONS; CURVATURE;
D O I
10.1007/s11425-017-9173-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the C-1,C-1-regularity of the plurisubharmonic envelope of a C-1,C-1 function on a compact Hermitian manifold. We also present the examples to show this regularity is sharp.
引用
收藏
页码:371 / 380
页数:10
相关论文
共 26 条
[1]  
[Anonymous], 2017, ANN PDE
[2]  
AUBIN T, 1976, CR ACAD SCI A MATH, V283, P119
[3]   DIRICHLET PROBLEM FOR A COMPLEX MONGE-AMPERE EQUATION [J].
BEDFORD, E ;
TAYLOR, BA .
INVENTIONES MATHEMATICAE, 1976, 37 (01) :1-44
[4]  
Berman R. J., 2013, MONGE AMPERE EQUATIO
[5]  
Berman R J, 2012, PERSPECTIVES ANAL GE, V296
[6]   BERGMAN KERNELS AND EQUILIBRIUM MEASURES FOR LINE BUNDLES OVER PROJECTIVE MANIFOLDS [J].
Berman, Robert J. .
AMERICAN JOURNAL OF MATHEMATICS, 2009, 131 (05) :1485-1524
[7]   On regularization of plurisubharmonic functions on manifolds [J].
Blocki, Zbigniew ;
Kolodziej, Slawomir .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (07) :2089-2093
[8]   A gradient estimate in the Calabi-Yau theorem [J].
Blocki, Zbigniew .
MATHEMATISCHE ANNALEN, 2009, 344 (02) :317-327
[9]   Monge-Ampere equations in big cohomology classes [J].
Boucksom, Sebastien ;
Eyssidieux, Philippe ;
Guedj, Vincent ;
Zeriahi, Ahmed .
ACTA MATHEMATICA, 2010, 205 (02) :199-262
[10]  
CHERRIER P, 1987, B SCI MATH, V111, P343