DEPTH MAP SUPER RESOLUTION

被引:0
|
作者
Gevrekci, Murat [1 ]
Pakin, Kubilay [1 ]
机构
[1] ASELSAN Microelect, Guidance & Electroopt Div, TR-70803 Ankara, Akyurt, Turkey
来源
2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2011年
关键词
Depth super resolution; alternating exposure times; time-of-flight camera; POCS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The objective of this work is to increase the range resolution of time-of-flight (ToF) cameras. Our work aims to produce a super-resolution depth map and reduce the depth error within the whole work volume using a novel multi-exposure data acquisition technique and Projection Onto Convex Sets (POCS) reconstruction. The proposed methods will also be applicable to other imaging modalities which have the capability of acquiring range data, such as LIDAR (Light Detection and Ranging). Performance is demonstrated on ToF and CCD camera jointly to increase both depth map and form high resolution point cloud.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Depth Map Super-Resolution Considering View Synthesis Quality
    Lei, Jianjun
    Li, Lele
    Yue, Huanjing
    Wu, Feng
    Ling, Nam
    Hou, Chunping
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (04) : 1732 - 1745
  • [22] Depth Map Super-Resolution Using Guided Deformable Convolution
    Kim, Joon-Yeon
    Ji, Seowon
    Baek, Seung-Jin
    Jung, Seung-Won
    Ko, Sung-Jea
    IEEE ACCESS, 2021, 9 : 66626 - 66635
  • [23] Depth map Super-Resolution based on joint dictionary learning
    Li-Wei Liu
    Liang-Hao Wang
    Ming Zhang
    Multimedia Tools and Applications, 2015, 74 : 467 - 477
  • [24] BridgeNet: A Joint Learning Network of Depth Map Super-Resolution and Monocular Depth Estimation
    Tang, Qi
    Cong, Runmin
    Sheng, Ronghui
    He, Lingzhi
    Zhang, Dan
    Zhao, Yao
    Kwong, Sam
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 2148 - 2157
  • [25] Hierarchical Edge Refinement Network for Guided Depth Map Super-Resolution
    Zhang, Shuo
    Pan, Zexu
    Lv, Yichang
    Lin, Youfang
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2024, 10 : 469 - 478
  • [26] Depth Map Super-Resolution Reconstruction Based on Convolutional Neural Networks
    Li S.
    Lei G.
    Fan R.
    Lei, Guoqing (lgq20051118@163.com), 2017, Chinese Optical Society (37):
  • [27] Depth Map Super-Resolution via Extended Weighted Mode Filtering
    Fu, Mingliang
    Zhou, Weijia
    2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,
  • [28] Adaptive Aggregate Stereo Matching Network with Depth Map Super-Resolution
    Liu, Botao
    Chen, Kai
    Peng, Sheng-Lung
    Zhao, Ming
    SENSORS, 2022, 22 (12)
  • [29] Discrete Cosine Transform Network for Guided Depth Map Super-Resolution
    Zhao, Zixiang
    Zhang, Jiangshe
    Xu, Shuang
    Lin, Zudi
    Pfister, Hanspeter
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5687 - 5697
  • [30] Depth Map Super-Resolution by Deep Multi-Scale Guidance
    Hui, Tak-Wai
    Loy, Chen Change
    Tang, Xiaoou
    COMPUTER VISION - ECCV 2016, PT III, 2016, 9907 : 353 - 369