Local-in-time well-posedness for compressible MHD boundary layer

被引:14
作者
Huang, Yongting [1 ]
Liu, Cheng-Jie [2 ,3 ]
Yang, Tong [1 ,3 ]
机构
[1] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[2] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Compressible MHD; Boundary layers; Non-monotonic velocity fields; Local well-posedness; NAVIER-STOKES EQUATION; ZERO VISCOSITY LIMIT; PRANDTL EQUATIONS; GLOBAL EXISTENCE; ILL-POSEDNESS; SPECTRAL INSTABILITY; ANALYTIC SOLUTIONS; HALF-SPACE; SYSTEM; EULER;
D O I
10.1016/j.jde.2018.08.052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concerned with the motion of electrically conducting fluid governed by the two-dimensional non-isentropic viscous compressible MHD system on the half plane with no-slip condition on the velocity field, perfectly conducting wall condition on the magnetic field and Dirichlet boundary condition on the temperature on the boundary. When the viscosity, heat conductivity and magnetic diffusivity coefficients tend to zero in the same rate, there is a boundary layer which is described by a Prandtl-type system. Under the non-degeneracy condition on the tangential magnetic field instead of monotonicity of velocity, by applying a coordinate transformation in terms of the stream function of magnetic field as motivated by the recent work [27], we obtain the local-in-time well-posedness of the boundary layer system in weighted Sobolev spaces. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:2978 / 3013
页数:36
相关论文
共 38 条
  • [1] Alexandre R, 2015, J AM MATH SOC, V28, P745
  • [2] [Anonymous], 2000, ACTA MATH SIN ENGL S
  • [3] Caflisch RE, 2000, Z ANGEW MATH MECH, V80, P733, DOI 10.1002/1521-4001(200011)80:11/12<733::AID-ZAMM733>3.0.CO
  • [4] 2-L
  • [5] THE LAMINAR BOUNDARY LAYER IN COMPRESSIBLE FLOW
    COPE, WF
    HARTREE, DR
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1948, 241 (827) : 1 - &
  • [6] G?rard-Varet D., ARXIV160706434
  • [7] Singularity formation for Prandtl's equations
    Gargano, F.
    Sammartino, M.
    Sciacca, V.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (19) : 1975 - 1991
  • [8] Formal derivation and stability analysis of boundary layer models in MHD
    Gerard-Varet, D.
    Prestipino, M.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03):
  • [9] Remarks on the ill-posedness of the Prandtl equation
    Gerard-Varet, D.
    Nguyen, T.
    [J]. ASYMPTOTIC ANALYSIS, 2012, 77 (1-2) : 71 - 88
  • [10] Gérard-Varet D, 2015, ANN SCI ECOLE NORM S, V48, P1273