Emerging artificial intelligence applications in liver magnetic resonance imaging

被引:13
作者
Hill, Charles E. [1 ]
Biasiolli, Luca [2 ]
Robson, Matthew D. [3 ]
Grau, Vicente [4 ]
Pavlides, Michael [5 ,6 ,7 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX3 7DQ, England
[2] Univ Oxford, Radcliffe Dept Med, Oxford OX3 9DU, England
[3] Perspectum Ltd, MR Phys, Oxford OX4 2LL, England
[4] Univ Oxford, Dept Engn, Oxford OX3 7DQ, England
[5] Univ Oxford, Oxford Ctr Clin Magnet Resonance Res, Div Cardiovasc Med, Radcliffe Dept Med, Oxford OX3 9DU, England
[6] Univ Oxford, Translat Gastroenterol Unit, Oxford OX3 9DU, England
[7] Univ Oxford, Oxford NIHR Biomed Res Ctr, Oxford OX3 9DU, England
基金
英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
Liver diseases; Magnetic resonance imaging; Machine learning; Deep learning; Artificial intelligence; Computer vision; CONVOLUTIONAL NEURAL-NETWORK; HEPATOCELLULAR-CARCINOMA; ADVANCED FIBROSIS; MRI; SEGMENTATION; DIAGNOSIS; DISEASE; PREVALENCE; CANCERS; NAFLD;
D O I
10.3748/wjg.v27.i40.6825
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Chronic liver diseases (CLDs) are becoming increasingly more prevalent in modern society. The use of imaging techniques for early detection, such as magnetic resonance imaging (MRI), is crucial in reducing the impact of these diseases on healthcare systems. Artificial intelligence (AI) algorithms have been shown over the past decade to excel at image- based analysis tasks such as detection and segmentation. When applied to liver MRI, they have the potential to improve clinical decision making, and increase throughput by automating analyses. With Liver diseases becoming more prevalent in society, the need to implement these techniques to utilize liver MRI to its full potential, is paramount. In this review, we report on the current methods and applications of AI methods in liver MRI, with a focus on machine learning and deep learning methods. We assess four main themes of segmentation, classification, image synthesis and artefact detection, and their respective potential in liver MRI and the wider clinic. We provide a brief explanation of some of the algorithms used and explore the current challenges affecting the field. Though there are many hurdles to overcome in implementing AI methods in the clinic, we conclude that AI methods have the potential to positively aid healthcare professionals for years to come.
引用
收藏
页码:6825 / 6843
页数:19
相关论文
共 86 条
[71]   Extending 2-D Convolutional Neural Networks to 3-D for Advancing Deep Learning Cancer Classification With Application to MRI Liver Tumor Differentiation [J].
Trivizakis, Eleftherios ;
Manikis, Georgios C. ;
Nikiforaki, Katerina ;
Drevelegas, Konstantinos ;
Constantinides, Manos ;
Drevelegas, Antonios ;
Marias, Kostas .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (03) :923-930
[72]   Multi-Modal Learning from Unpaired Images: Application to Multi-Organ Segmentation in CT and MRI [J].
Valindria, Vanya V. ;
Pawlowski, Nick ;
Rajchl, Martin ;
Lavdas, Ioannis ;
Aboagye, Eric O. ;
Rockall, Andrea G. ;
Rueckert, Daniel ;
Glocker, Ben .
2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, :547-556
[73]   Automated CT and MRI Liver Segmentation and Biometry Using a Generalized Convolutions Neural Network [J].
Wang, Kang ;
Mamidipalli, Adrija ;
Retson, Tara ;
Bahrami, Naeim ;
Hasenstab, Kyle ;
Blansit, Kevin ;
Bass, Emily ;
Delgado, Timoteo ;
Cunha, Guilherme ;
Middleton, Michael S. ;
Loomba, Rohit ;
Neuschwander-Tetri, Brent A. ;
Sirlin, Claude B. ;
Hsiao, Albert .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2019, 1 (02)
[74]   A two-step automated quality assessment for liver MR images based on convolutional neural network [J].
Wang, Yida ;
Song, Yang ;
Wang, Fang ;
Sun, Jingjing ;
Gao, Xinyi ;
Han, Zhe ;
Shi, Lei ;
Shao, Guoliang ;
Fan, Mingxia ;
Yang, Guang .
EUROPEAN JOURNAL OF RADIOLOGY, 2020, 124
[75]   Prevalence of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis Among a Largely Middle-Aged Population Utilizing Ultrasound and Liver Biopsy: A Prospective Study [J].
Williams, Christopher D. ;
Stengel, Joel ;
Asike, Michael I. ;
Torres, Dawn M. ;
Shaw, Janet ;
Contreras, Maricela ;
Landt, Cristy L. ;
Harrison, Stephen A. .
GASTROENTEROLOGY, 2011, 140 (01) :124-131
[76]   A 3D Deep Neural Network for Liver Volumetry in 3T Contrast-Enhanced MRI [J].
Winther, Hinrich ;
Hundt, Christian ;
Ringe, Kristina Imeen ;
Wacker, Frank K. ;
Schmidt, Bertil ;
Juergens, Julian ;
Haimerl, Michael ;
Beyer, Lukas Philipp ;
Stroszczynski, Christian ;
Wiggermann, Philipp ;
Verloh, Niklas .
ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2021, 193 (03) :305-314
[77]   Prevalence of non-alcoholic fatty liver disease and advanced fibrosis in Hong Kong Chinese: a population study using proton-magnetic resonance spectroscopy and transient elastography [J].
Wong, Vincent Wai-Sun ;
Chu, Winnie Chiu-Wing ;
Wong, Grace Lai-Hung ;
Chan, Ruth Suk-Mei ;
Chim, Angel Mei-Ling ;
Ong, Arlinking ;
Yeung, David Ka-Wai ;
Yiu, Karen Kar-Lum ;
Chu, Shirley Ho-Ting ;
Woo, Jean ;
Chan, Francis Ka-Leung ;
Chan, Henry Lik-Yuen .
GUT, 2012, 61 (03) :409-415
[78]   Radiomics-based classification of hepatocellular carcinoma and hepatic haemangioma on precontrast magnetic resonance images [J].
Wu, Jingjun ;
Liu, Ailian ;
Cui, Jingjing ;
Chen, Anliang ;
Song, Qingwei ;
Xie, Lizhi .
BMC MEDICAL IMAGING, 2019, 19 (1)
[79]   Predicting the grade of hepatocellular carcinoma based on non-contrast-enhanced MRI radiomics signature [J].
Wu, Minghui ;
Tan, Hongna ;
Gao, Fei ;
Hai, Jinjin ;
Ning, Peigang ;
Chen, Jian ;
Zhu, Shaocheng ;
Wang, Meiyun ;
Dou, Shewei ;
Shi, Dapeng .
EUROPEAN RADIOLOGY, 2019, 29 (06) :2802-2811
[80]   Deep learning LI-RADS grading system based on contrast enhanced multiphase MRI for differentiation between LR-3 and LR-4/LR-5 liver tumors [J].
Wu, Yunan ;
White, Gregory M. ;
Cornelius, Tyler ;
Gowdar, Indraneel ;
Ansari, Mohammad H. ;
Supanich, Mark P. ;
Deng, Jie .
ANNALS OF TRANSLATIONAL MEDICINE, 2020, 8 (11)