New algorithm for ordered tree-to-tree correction problem

被引:46
作者
Chen, WM [1 ]
机构
[1] German Natl Res Ctr Informat Technol, Integrated Publicat & Informat Syst Inst, D-64293 Darmstadt, Germany
来源
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC | 2001年 / 40卷 / 02期
关键词
D O I
10.1006/jagm.2001.1170
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The ordered tree-to-tree correction problem is to compute the minimum edit cost of transforming one ordered tree to another one. This paper presents a new algorithm for this problem. Given two ordered trees S and T, our algorithm runs in O(\S \ \T \ + min (L-S(2)\T \ + L-S(2.5) L-T, L-T(2)\S \ +(LTLS)-L-2.5) time, where L-S denotes the number of leaves of S and D-S denotes the depth of S. The previous best algorithms for this problem run in O(\S \ \T \ min (L-S, D-S} min {L-T, D-T}) time (K. Zhang and D. Shasha, SIAM J. Comput. 18, No. 6 (1989), 1245-1262) and in O(min (\S \ (2) \T \ log(2) \T \, \T \ (2)\S \ log(2) \S \}) time (P. N. Klein, in "Algorithms-ESA'98, 6th Annual European Symposium" (G. Bilardi, G. F. ltaliano, A. Pietracaprina, and G. Pucci, Eds.), Lecture Notes in Computer Science, Vol. 1461, pp. 91-102, Springer-Verlag, Berlin/New York, 1998). As a comparison, our algorithm is asymptotically faster for certain kind of trees. (C) 2001 Academic Press.
引用
收藏
页码:135 / 158
页数:24
相关论文
共 12 条
[1]  
Aho A.V., 1974, The Design and Analysis of Computer Algorithms
[2]   On the exponent of the all pairs shortest path problem [J].
Alon, N ;
Galil, Z ;
Margalit, O .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1997, 54 (02) :255-262
[3]  
Chawathe SS, 1999, PROCEEDINGS OF THE TWENTY-FIFTH INTERNATIONAL CONFERENCE ON VERY LARGE DATA BASES, P90
[4]   MATRIX MULTIPLICATION VIA ARITHMETIC PROGRESSIONS [J].
COPPERSMITH, D ;
WINOGRAD, S .
JOURNAL OF SYMBOLIC COMPUTATION, 1990, 9 (03) :251-280
[5]  
FLOYD RW, 1962, COMMUN ACM, V5, P245
[6]  
Fredman M. L., 1976, SIAM Journal on Computing, V5, P83, DOI 10.1137/0205006
[7]  
Klein P., 1998, LECT NOTES COMPUTER, V1461, P91
[8]   FAST ALGORITHMS FOR THE UNIT COST EDITING DISTANCE BETWEEN TREES [J].
SHASHA, D ;
ZHANG, KZ .
JOURNAL OF ALGORITHMS, 1990, 11 (04) :581-621
[9]   GAUSSIAN ELIMINATION IS NOT OPTIMAL [J].
STRASSEN, V .
NUMERISCHE MATHEMATIK, 1969, 13 (04) :354-&
[10]   TREE-TO-TREE CORRECTION PROBLEM [J].
TAI, KC .
JOURNAL OF THE ACM, 1979, 26 (03) :422-433