Superfast precipitation of energetic electrons in the radiation belts of the Earth

被引:64
作者
Zhang, Xiao-Jia [1 ]
Artemyev, Anton [1 ]
Angelopoulos, Vassilis [1 ]
Tsai, Ethan [1 ]
Wilkins, Colin [1 ]
Kasahara, Satoshi [2 ]
Mourenas, Didier [3 ]
Yokota, Shoichiro [4 ]
Keika, Kunihiro [2 ]
Hori, Tomoaki [5 ]
Miyoshi, Yoshizumi [5 ]
Shinohara, Iku [6 ]
Matsuoka, Ayako [7 ]
机构
[1] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA
[2] Univ Tokyo, Sch Sci, Dept Earth & Planetary Sci, Tokyo, Japan
[3] Paris Saclay Univ, CEA, Lab Matiere Condit Extremes, Bruyeres Le Chatel, France
[4] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Toyonaka, Osaka, Japan
[5] Nagoya Univ, Inst Space Earth Environm Res, Nagoya, Aichi, Japan
[6] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan
[7] Kyoto Univ, Grad Sch Sci, Kyoto, Japan
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
WHISTLER-MODE WAVES; CHORUS WAVES; GEOMAGNETIC STORMS; MAGNETIC-FIELD; ACCELERATION; INSTRUMENT; SCATTERING; DYNAMICS;
D O I
10.1038/s41467-022-29291-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Energetic electron precipitation from Earth's outer radiation belt heats the upper atmosphere and alters its chemical properties. The precipitating flux intensity, typically modelled using inputs from high-altitude, equatorial spacecraft, dictates the radiation belt's energy contribution to the atmosphere and the strength of space-atmosphere coupling. The classical quasi-linear theory of electron precipitation through moderately fast diffusive interactions with plasma waves predicts that precipitating electron fluxes cannot exceed fluxes of electrons trapped in the radiation belt, setting an apparent upper limit for electron precipitation. Here we show from low-altitude satellite observations, that similar to 100 keV electron precipitation rates often exceed this apparent upper limit. We demonstrate that such superfast precipitation is caused by nonlinear electron interactions with intense plasma waves, which have not been previously incorporated in radiation belt models. The high occurrence rate of superfast precipitation suggests that it is important for modelling both radiation belt fluxes and space-atmosphere coupling.
引用
收藏
页数:8
相关论文
共 69 条
[1]   Spatial Extent and Temporal Correlation of Chorus and Hiss: Statistical Results From Multipoint THEMIS Observations [J].
Agapitov, O. ;
Mourenas, D. ;
Artemyev, A. ;
Mozer, F. S. ;
Bonnell, J. W. ;
Angelopoulos, V. ;
Shastun, V. ;
Krasnoselskikh, V. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (10) :8317-8330
[2]   Nonlinear local parallel acceleration of electrons through Landau trapping by oblique whistler mode waves in the outer radiation belt [J].
Agapitov, O. V. ;
Artemyev, A. V. ;
Mourenas, D. ;
Mozer, F. S. ;
Krasnoselskikh, V. .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (23) :10140-10149
[3]   The quasi-electrostatic mode of chorus waves and electron nonlinear acceleration [J].
Agapitov, O. V. ;
Artemyev, A. V. ;
Mourenas, D. ;
Krasnoselskikh, V. ;
Bonnell, J. ;
Le Contel, O. ;
Cully, C. M. ;
Angelopoulos, V. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (03) :1606-1626
[4]   Statistics of whistler mode waves in the outer radiation belt: Cluster STAFF-SA measurements [J].
Agapitov, Oleksiy ;
Artemyev, Anton ;
Krasnoselskikh, Vladimir ;
Khotyaintsev, Yuri V. ;
Mourenas, Didier ;
Breuillard, Hugo ;
Balikhin, Michael ;
Rolland, Guy .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2013, 118 (06) :3407-3420
[5]   Diffusion by one wave and by many waves [J].
Albert, J. M. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
[6]   Electron Diffusion and Advection During Nonlinear Interactions With Whistler-Mode Waves [J].
Allanson, O. ;
Watt, C. E. J. ;
Allison, H. J. ;
Ratcliffe, H. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2021, 126 (05)
[7]   The ELFIN Mission [J].
Angelopoulos, V ;
Tsai, E. ;
Bingley, L. ;
Shaffer, C. ;
Turner, D. L. ;
Runov, A. ;
Li, W. ;
Liu, J. ;
Artemyev, A., V ;
Zhang, X-J ;
Strangeway, R. J. ;
Wirz, R. E. ;
Shprits, Y. Y. ;
Sergeev, V. A. ;
Caron, R. P. ;
Chung, M. ;
Cruce, P. ;
Greer, W. ;
Grimes, E. ;
Hector, K. ;
Lawson, M. J. ;
Leneman, D. ;
Masongsong, E., V ;
Russell, C. L. ;
Wilkins, C. ;
Hinkley, D. ;
Blake, J. B. ;
Adair, N. ;
Allen, M. ;
Anderson, M. ;
Arreola-Zamora, M. ;
Artinger, J. ;
Asher, J. ;
Branchevsky, D. ;
Capitelli, M. R. ;
Castro, R. ;
Chao, G. ;
Chung, N. ;
Cliffe, M. ;
Colton, K. ;
Costello, C. ;
Depe, D. ;
Domae, B. W. ;
Eldin, S. ;
Fitzgibbon, L. ;
Flemming, A. ;
Fox, I ;
Frederick, D. M. ;
Gilbert, A. ;
Gildemeister, A. .
SPACE SCIENCE REVIEWS, 2020, 216 (05)
[8]  
Angelopoulos V, 2008, SPACE SCI REV, V141, P5, DOI 10.1007/s11214-008-9336-1
[9]   Theoretical model of the nonlinear resonant interaction of whistler-mode waves and field-aligned electrons [J].
Artemyev, A., V ;
Neishtadt, A., I ;
Albert, J. M. ;
Gan, L. ;
Li, W. ;
Ma, Q. .
PHYSICS OF PLASMAS, 2021, 28 (05)
[10]   Mapping for nonlinear electron interaction with whistler-mode waves [J].
Artemyev, A. V. ;
Neishtadt, A. I. ;
Vasiliev, A. A. .
PHYSICS OF PLASMAS, 2020, 27 (04)