Everywhere differentiability of infinity harmonic functions

被引:75
作者
Evans, Lawrence C. [1 ]
Smart, Charles K. [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
LIPSCHITZ EXTENSIONS; 2; DIMENSIONS; REGULARITY;
D O I
10.1007/s00526-010-0388-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that an infinity harmonic function, that is, a viscosity solution of the nonlinear PDE -Delta(infinity)u = -u(xi)u(xj)u(xixj) = 0, is everywhere differentiable. Our new innovation is proving the uniqueness of appropriately rescaled blow-up limits around an arbitrary point.
引用
收藏
页码:289 / 299
页数:11
相关论文
共 11 条
[1]  
[Anonymous], ANN MATH STUDIES
[2]   An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions [J].
Armstrong, Scott N. ;
Smart, Charles K. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (3-4) :381-384
[3]   A tour of the theory of absolutely minimizing functions [J].
Aronsson, G ;
Crandall, MG ;
Juutinen, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 41 (04) :439-505
[4]  
Crandall M. G., 2001, ELECT J DIFFER EQU C, V6, P123
[5]  
Crandall MG, 2001, CALC VAR PARTIAL DIF, V13, P123
[6]  
Crandall MG, 2008, LECT NOTES MATH, V1927, P75
[7]   C1,α supercript stop regularity for infinity harmonic functions in two dimensions [J].
Evans, Lawrence C. ;
Savin, Ovidiu .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 32 (03) :325-347
[8]  
EVANS LC, ADJOINT MET IN PRESS
[9]   UNIQUENESS OF LIPSCHITZ EXTENSIONS - MINIMIZING THE SUP NORM OF THE GRADIENT [J].
JENSEN, R .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 123 (01) :51-74
[10]  
Peres Y, 2009, J AM MATH SOC, V22, P167