Deep Learning-Based channel estimation with SRGAN in OFDM Systems

被引:13
作者
Zhao, Siqiang [1 ]
Fang, Yuan [1 ]
Qiu, Ling [1 ]
机构
[1] Univ Sci & Technol China, Chinese Acad Sci, Sch Informat Sci & Technol, Key Lab Wireless Opt Commun, Hefei, Peoples R China
来源
2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC) | 2021年
关键词
Channel estimation; deep learning; super-resolution; generative adversarial network (GAN);
D O I
10.1109/WCNC49053.2021.9417242
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a novel deep learning-based channel estimation scheme in an orthogonal frequency division multiplexing (OFDM) system. The channel response with known pilot positions can be treated as a low-resolution image. Then, we explore a generative adversarial network (GAN) for channel super-resolution (SR) to estimate the whole channel state information (CSI). For previous deep learning-based channel estimators recovered by a single model, high-frequency details are missing and they fail to match the fidelity expected at the higher resolution. The scheme we proposed is more consistent with the real channel by adding a discriminator to recover more details of the channel. The simulation results show that our scheme is superior to other SR-based channel estimation methods and close to the linear minimum mean square error (LMMSE) performance.
引用
收藏
页数:6
相关论文
共 18 条
[1]  
[Anonymous], 2016, Standard 802.11-2016 Revision of IEEE Std 802.11-2012, DOI [DOI 10.1109/IEEESTD.2016.7786995, 10.1109/IEEESTD.2016.7786995]
[2]   Channel estimation techniques based on pilot arrangement in OFDM systems [J].
Coleri, S ;
Ergen, M ;
Puri, A ;
Bahai, A .
IEEE TRANSACTIONS ON BROADCASTING, 2002, 48 (03) :223-229
[3]  
D'Andrea C, 2019, 2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), P554, DOI [10.1109/camsap45676.2019.9022520, 10.1109/CAMSAP45676.2019.9022520]
[4]   OFDM channel estimation by singular value decomposition [J].
Edfors, O ;
Sandell, M ;
van de Beek, JJ ;
Wilson, SK ;
Borjesson, PO .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1998, 46 (07) :931-939
[5]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[6]   Deep Learning-Based Channel Estimation for Beamspace mmWave Massive MIMO Systems [J].
He, Hengtao ;
Wen, Chao-Kai ;
Jin, Shi ;
Li, Geoffrey Ye .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2018, 7 (05) :852-855
[7]   Deep Learning for Super-Resolution Channel Estimation and DOA Estimation Based Massive MIMO System [J].
Huang, Hongji ;
Yang, Jie ;
Huang, Hao ;
Song, Yiwei ;
Gui, Guan .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (09) :8549-8560
[8]  
Ioffe S, 2015, PR MACH LEARN RES, V37, P448
[9]   Channel Estimation for Cell-Free mmWave Massive MIMO Through Deep Learning [J].
Jin, Yu ;
Zhang, Jiayi ;
Jin, Shi ;
Ai, Bo .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (10) :10325-10329
[10]   Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network [J].
Ledig, Christian ;
Theis, Lucas ;
Huszar, Ferenc ;
Caballero, Jose ;
Cunningham, Andrew ;
Acosta, Alejandro ;
Aitken, Andrew ;
Tejani, Alykhan ;
Totz, Johannes ;
Wang, Zehan ;
Shi, Wenzhe .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :105-114