Data analytic wavelet threshold selection in 2-D signal denoising

被引:34
作者
Hilton, ML
Ogden, RT
机构
[1] UNIV S CAROLINA,DEPT COMP SCI,COLUMBIA,SC 29208
[2] UNIV S CAROLINA,DEPT STAT,COLUMBIA,SC 29208
关键词
D O I
10.1109/78.554318
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A data adaptive scheme for wavelet shrinkage-based noise removal is developed. The method involves a statistical test of hypothesis that takes into account the wavelet coefficients' magnitudes and relative positions. The amount of smoothing performed during noise removal is controlled by the user-supplied confidence level of the tests.
引用
收藏
页码:496 / 500
页数:5
相关论文
共 17 条
[1]  
[Anonymous], 1996, Wavelets in Medicine and Biology
[2]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[3]  
DEVORE RA, 1992, IEEE MIL COMM C
[4]  
Donoho D. L., 1993, Different, P173, DOI 10.1090/psapm/047
[5]   DE-NOISING BY SOFT-THRESHOLDING [J].
DONOHO, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (03) :613-627
[6]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455
[7]   Adapting to unknown smoothness via wavelet shrinkage [J].
Donoho, DL ;
Johnstone, IM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (432) :1200-1224
[8]   A THEORY FOR MULTIRESOLUTION SIGNAL DECOMPOSITION - THE WAVELET REPRESENTATION [J].
MALLAT, SG .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (07) :674-693
[9]  
NASON GP, 1994, 447 STANF U DEP STAT
[10]  
OGDEN RT, 1996, COMPUT STAT DATA AN, V22, P53