We show an exponential separation between two well-studied models of algebraic computation, namely read-once oblivious algebraic branching programs (ROABPs) and multilinear depth three circuits. In particular we show the following: 1. There exists an explicit n-variate polynomial computable by linear sized multilinear depth three circuits (with only two product gates) such that every ROABP computing it requires 2(Omega(n)) size. 2. Any multilinear depth three circuit computing IMMn, d (the iterated matrix multiplication polynomial formed by multiplying d, n x n symbolic matrices) has n(Omega(d)) size.IMMn, d can be easily computed by a poly(n, d) sized ROABP. 3. Further, the proof of 2 yields an exponential separation between multilinear depth four and multilinear depth three circuits: There is an explicit n-variate, degree d polynomial computable by a poly(n, d) sized multilinear depth four circuit such that any multilinear depth three circuit computing it has size n(Omega(d)). This improves upon the quasi-polynomial separation result by Raz and Yehudayoff [2009] between these two models. The hard polynomial in 1 is constructed using a novel application of expander graphs in conjunction with the evaluation dimension measure used previously in Nisan [1991], Raz [2006,2009], Raz and Yehudayoff [2009], and Forbes and Shpilka [2013], while 2 is proved via a new adaptation of the dimension of the partial derivatives measure used by Nisan and Wigderson [1997]. Our lower bounds hold over any field.