Approximation of signals of class Lip(α, p) by linear operators

被引:19
作者
Mittal, M. L. [1 ]
Rhoades, B. E. [2 ]
Sonker, Smita [1 ]
Singh, U. [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
[2] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
Signals; Class Lip(alpha; beta); Trigonometric-Fourier approximation; L-p-norm; TRIGONOMETRIC APPROXIMATION;
D O I
10.1016/j.amc.2010.10.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Mittal, Rhoades [5-8] and Mittal et al. [9,10] have initiated a study of error estimates E-n(f) through trigonometric-Fourier approximation (tfa) for the situations in which the summability matrix T does not have monotone rows. In this paper we continue the work. Here we extend two theorems of Leindler [4], where he has weakened the conditions on {p(n)} given by Chandra [2], to more general classes of triangular matrix methods. Our Theorem also partially generalizes Theorem 4 of Mittal et al. [11] by dropping the monotonicity on the elements of matrix rows, which in turn generalize the results of Quade [15]. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:4483 / 4489
页数:7
相关论文
共 15 条
[1]   Trigonometric approximation of functions in Lp-norm [J].
Chandra, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 275 (01) :13-26
[2]  
Chandra P., 1990, MAT VESTNIK, V42, P9
[3]   Estimates for entries of matrix valued functions of infinite matrices [J].
Gil, M. I. .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2008, 11 (02) :175-186
[4]   Trigonometric approximation in Lp-norm [J].
Leindler, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 302 (01) :129-136
[5]   Using infinite matrices to approximate functions of class Lip(α, p) using trigonometric polynomials [J].
Mittal, M. L. ;
Rhoades, B. E. ;
Mishra, V. N. ;
Singh, Uaday .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (01) :667-676
[6]  
Mittal M.L., 2005, INDIAN J MATH, V47, P217
[7]  
Mittal M.L., 1999, RADOVI MAT, V9, P77
[8]  
Mittal M. L., 2000, J COMPUTATIONAL ANAL, V2, P1
[9]  
Mittal M. L., 1999, INT J MATH GAME THEO, V9, P259
[10]  
Mittal M.L., 2006, INT J MATH MATH SCI, V2006, P1