RNA-based dynamic genetic controllers: development strategies and applications

被引:36
作者
Jang, Sungho [1 ]
Jang, Sungyeon [1 ]
Yang, Jina [2 ]
Seo, Sang Woo [2 ]
Jung, Gyoo Yeol [1 ,3 ]
机构
[1] Pohang Univ Sci & Technol, Dept Chem Engn, 77 Cheongam Ro, Pohang 37673, Gyeongbuk, South Korea
[2] Seoul Natl Univ, Inst Chem Proc, Sch Chem & Biol Engn, 1 Gwanak Ro, Seoul 08826, South Korea
[3] Pohang Univ Sci & Technol, Sch Interdisciplinary Biosci & Bioengn, 77 Cheongam Ro, Pohang 37673, Gyeongbuk, South Korea
基金
新加坡国家研究基金会;
关键词
SYNTHETIC RIBOSWITCHES; RATIONAL DESIGN; GUIDE RNAS; EXPRESSION; SWITCHES; TRANSLATION; SELECTION;
D O I
10.1016/j.copbio.2017.10.005
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Dynamic regulation of gene expression in response to various molecules is crucial for both basic science and practical applications. RNA is considered an attractive material for creating dynamic genetic controllers because of its specific binding to ligands, structural flexibility, programmability, and small size. Here, we review recent advances in strategies for developing RNA-based dynamic controllers and applications. First, we describe studies that re-engineered natural riboswitches to generate new dynamic controllers. Next, we summarize RNA-based regulatory mechanisms that have been exploited to build novel artificial dynamic controllers. We also discuss computational methods and high-throughput selection approaches for de novo design of dynamic RNA controllers. Finally, we explain applications of dynamic RNA controllers for metabolic engineering and synthetic biology.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 61 条
[1]  
Ausländer S, 2014, NAT METHODS, V11, P1154, DOI [10.1038/NMETH.3136, 10.1038/nmeth.3136]
[2]   Design Principles for Riboswitch Function [J].
Beisel, Chase L. ;
Smolke, Christina D. .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (04)
[3]   Automated physics-based design of synthetic riboswitches from diverse RNA aptamers [J].
Borujeni, Amin Espah ;
Mishler, Dennis M. ;
Wang, Jingzhi ;
Huso, Walker ;
Salis, Howard M. .
NUCLEIC ACIDS RESEARCH, 2016, 44 (01) :1-13
[4]   Model-Driven Engineering of RNA Devices to Quantitatively Program Gene Expression [J].
Carothers, James M. ;
Goler, Jonathan A. ;
Juminaga, Darmawi ;
Keasling, Jay D. .
SCIENCE, 2011, 334 (6063) :1716-1719
[5]   Engineering modular 'ON' RNA switches using biological components [J].
Ceres, Pablo ;
Trausch, Jeremiah J. ;
Batey, Robert T. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (22) :10449-10461
[6]   Modularity of Select Riboswitch Expression Platforms Enables Facile Engineering of Novel Genetic Regulatory Devices [J].
Ceres, Pablo ;
Garst, Andrew D. ;
Marcano-Velazquez, Joan G. ;
Batey, Robert T. .
ACS SYNTHETIC BIOLOGY, 2013, 2 (08) :463-472
[7]   A renaissance in RNA synthetic biology: new mechanisms, applications and tools for the future [J].
Chappell, James ;
Watters, Kyle E. ;
Takahashi, Melissa K. ;
Lucks, Julius B. .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2015, 28 :47-56
[8]   Design Principles for Ligand-Sensing, Conformation-Switching Ribozymes [J].
Chen, Xi ;
Ellington, Andrew D. .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (12)
[9]   Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems [J].
Chen, Yvonne Y. ;
Jensen, Michael C. ;
Smolke, Christina D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (19) :8531-8536
[10]   Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria [J].
Dar, Daniel ;
Shamir, Maya ;
Mellin, J. R. ;
Koutero, Mikael ;
Stern-Ginossar, Noam ;
Cossart, Pascale ;
Sorek, Rotem .
SCIENCE, 2016, 352 (6282)