A Flexible Symplectic Scheme for Two-Dimensional Schrodinger Equation with Highly Accurate RBFs Quasi-Interpolation

被引:1
作者
Zhang, Shengliang [1 ]
Zhang, Liping [2 ]
机构
[1] Nanjing Forestry Univ, Coll Econ & Management, Nanjing, Jiangsu, Peoples R China
[2] Zhejiang Univ Technol, Dept Math, Hangzhou 310023, Zhejiang, Peoples R China
关键词
Two-dimensional Schrodinger equation; Cubic multiquadric quasi-interpolation; Symplectic integrator; Hamiltonian PDEs; Meshless method; ALGORITHM; COLLOCATION; INTEGRATION;
D O I
10.2298/FIL1917451Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on highly accurate multiquadric quasi-interpolation, this study suggests a meshless symplectic procedure for two-dimensional time-dependent Schrodinger equation. The method is high-order accurate, flexible with respect to the geometry, computationally efficient and easy to implement. We also present a theoretical framework to show the conservativeness and convergence of the proposed method. As the numerical experiments show, it not only offers a high order accuracy but also has a good performance in the long time integration.
引用
收藏
页码:5451 / 5461
页数:11
相关论文
共 29 条
[1]  
[Anonymous], 1994, APPL MATH MATH COMPU
[2]  
[Anonymous], 2005, Wave Propag. Underw. Acoust., DOI [DOI 10.1007/3-540-08527-0_5, 10.1007/3-540-08527-05, DOI 10.1007/3-540-08527-05, DOI 10.1007/3-540-08527-0]
[3]   Numerically absorbing boundary conditions for quantum evolution equations [J].
Arnold, A .
VLSI DESIGN, 1998, 6 (1-4) :313-319
[4]   Multiquadric B-splines [J].
Beatson, RK ;
Dyn, N .
JOURNAL OF APPROXIMATION THEORY, 1996, 87 (01) :1-24
[5]   UNIVARIATE MULTIQUADRIC APPROXIMATION - QUASI-INTERPOLATION TO SCATTERED DATA [J].
BEATSON, RK ;
POWELL, MJD .
CONSTRUCTIVE APPROXIMATION, 1992, 8 (03) :275-288
[6]   Numerical methods for Hamiltonian PDEs [J].
Bridges, Thomas J. ;
Reich, Sebastian .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (19) :5287-5320
[7]  
Cano B, 2006, NUMER MATH, V103, P197, DOI [10.1007/s00211-006-0680-3, 10.1007/S00211-006-0680-3]
[8]   Exponential convergence and H-c multiquadric collocation method for partial differential equations [J].
Cheng, AHD ;
Golberg, MA ;
Kansa, EJ ;
Zammito, G .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (05) :571-594
[9]   A numerical method for two-dimensional Schrodinger equation using collocation and radial basis functions [J].
Dehghan, Mehdi ;
Shokri, Ali .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (01) :136-146
[10]   Symplectic finite difference approximations of the nonlinear Klein-Gordon equation [J].
Duncan, DB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) :1742-1760