High-dimensional simultaneous inference with the bootstrap

被引:78
作者
Dezeure, Ruben [1 ]
Buhlmann, Peter [1 ]
Zhang, Cun-Hui [2 ]
机构
[1] Swiss Fed Inst Technol, Seminar Stat, HG G 17,Ramistr 101, CH-8092 Zurich, Switzerland
[2] Rutgers State Univ, Dept Stat & Biostat, 569 Hill Ctr,Busch Campus, Piscataway, NJ 08854 USA
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
De-biased Lasso; De-sparsified Lasso; Gaussian approximation for maxima; High-dimensional linear model; Heteroscedastic errors; Multiple testing; Westfall-Young method; CONFIDENCE-INTERVALS; VARIABLE SELECTION; P-VALUES; LASSO; REGRESSION; ESTIMATOR;
D O I
10.1007/s11749-017-0554-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a residual and wild bootstrap methodology for individual and simultaneous inference in high-dimensional linear models with possibly non-Gaussian and heteroscedastic errors. We establish asymptotic consistency for simultaneous inference for parameters in groups G, where , and , with p the number of variables, n the sample size and the sparsity. The theory is complemented by many empirical results. Our proposed procedures are implemented in the R-package hdi (Meier et al. hdi: high-dimensional inference. R package version 0.1-6, 2016).
引用
收藏
页码:685 / 719
页数:35
相关论文
共 46 条
[1]  
[Anonymous], ARXIV14123661
[2]   CONTROLLING THE FALSE DISCOVERY RATE VIA KNOCKOFFS [J].
Barber, Rina Foygel ;
Candes, Emmanuel J. .
ANNALS OF STATISTICS, 2015, 43 (05) :2055-2085
[3]   Uniform post-selection inference for least absolute deviation regression and other Z-estimation problems [J].
Belloni, A. ;
Chernozhukov, V. ;
Kato, K. .
BIOMETRIKA, 2015, 102 (01) :77-94
[4]  
Belloni A, 2015, ARXIV151207619
[5]  
Bickel P, 1998, EFFICIENT ADAPTIVE E
[6]  
Breiman L, 1996, ANN STAT, V24, P2350
[7]   High-dimensional inference in misspecified linear models [J].
Buehlmann, Peter ;
van de Geer, Sara .
ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01) :1449-1473
[8]   High-Dimensional Statistics with a View Toward Applications in Biology [J].
Buehlmann, Peter ;
Kalisch, Markus ;
Meier, Lukas .
ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 1, 2014, 1 :255-U809
[9]   RATES OF CONVERGENCE OF THE ADAPTIVE LASSO ESTIMATORS TO THE ORACLE DISTRIBUTION AND HIGHER ORDER REFINEMENTS BY THE BOOTSTRAP [J].
Chatterjee, A. ;
Lahiri, S. N. .
ANNALS OF STATISTICS, 2013, 41 (03) :1232-1259
[10]   Bootstrapping Lasso Estimators [J].
Chatterjee, A. ;
Lahiri, S. N. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (494) :608-625