Cusp and Nightside Auroral Sources of O+ in the Plasma Sheet

被引:13
作者
Kistler, L. M. [1 ,2 ]
Mouikis, C. G. [1 ]
Asamura, K. [3 ]
Yokota, S. [4 ]
Kasahara, S. [5 ]
Miyoshi, Y. [2 ]
Keika, K. [5 ]
Matsuoka, A. [3 ]
Shinohara, I [3 ]
Hori, T. [2 ]
Kitamura, N. [5 ]
Petrinec, S. M. [6 ]
Cohen, I. J. [7 ]
Delcourt, D. C. [8 ]
机构
[1] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA
[2] Inst Space Earth Environm Res, Nagoya, Aichi, Japan
[3] JAXA, ISAS, Sagamihara, Kanagawa, Japan
[4] Osaka Univ, Grad Sch Sci, Toyonaka, Osaka, Japan
[5] Univ Tokyo, Grad Sch Sci, Dept Earth & Planetary Sci, Tokyo, Japan
[6] Lockheed Martin Adv Technol Ctr, Palo Alto, CA USA
[7] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA
[8] Sorbonne Univ, Lab Phys Plasmas, Paris, France
关键词
Ion outflow; oxygen; cusp; ion sources; auroral outflow; ion transport; NEAR-EARTH MAGNETOTAIL; ION OUTFLOW; IONOSPHERIC IONS; BOUNDARY-LAYER; COLD; ACCELERATION; SPECTROMETER; DYNAMICS; ENERGY; BEAMS;
D O I
10.1029/2019JA027061
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Energetic O+ outflow is observed from both the dayside cusp and the nightside aurora, but the relative importance of these regions in populating the plasma sheet and ring current is not known. During a storm on 16 July 2017, the Arase and MMS satellites were located in the near-earth and midtail plasma sheet boundary layers (PSBL). During the storm main phase, Arase and MMS both observe O+ in the lobe entering the PSBL, followed by a time period with energy-dispersed bursts of tailward-streaming O+. The ions at MMS are at higher energies than at Arase. Trajectory modeling shows that the ions coming in from the lobe are cusp origin, while the more energetic bursty ions are from the nightside aurora. The observed and simulated energies and temporal dispersion are consistent with these sources. Thus, both regions directly contribute O+ to the plasma sheet during this storm main phase.
引用
收藏
页码:10036 / 10047
页数:12
相关论文
共 48 条
[1]   Estimates of the suprathermal O+ outflow characteristic energy and relative location in the auroral oval -: art. no. L09104 [J].
Andersson, L ;
Peterson, WK ;
McBryde, KM .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (09) :1-4
[2]   Low-energy particle experiments-ion mass analyzer (LEPi) onboard the ERG (Arase) satellite [J].
Asamura, K. ;
Kazama, Y. ;
Yokota, S. ;
Kasahara, S. ;
Miyoshi, Y. .
EARTH PLANETS AND SPACE, 2018, 70
[3]   THE TAIL LOBE ION SPECTROMETER - THEORY AND OBSERVATIONS [J].
CANDIDI, M ;
ORSINI, S ;
HORWITZ, JL .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1988, 93 (A12) :14401-14409
[4]   THE PROPERTIES OF IONOSPHERIC O+ IONS AS OBSERVED IN THE MAGNETOTAIL BOUNDARY-LAYER AND NORTHERN PLASMA LOBE [J].
CANDIDI, M ;
ORSINI, S ;
FORMISANO, V .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1982, 87 (NA11) :9097-9106
[5]   Observations of the warm plasma cloak and an explanation of its formation in the magnetosphere [J].
Chappell, C. R. ;
Huddleston, M. M. ;
Moore, T. E. ;
Giles, B. L. ;
Delcourt, D. C. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2008, 113 (A9)
[7]   SOLAR-CYCLE VARIATION OF SOME MASS DEPENDENT CHARACTERISTICS OF UPFLOWING BEAMS OF TERRESTRIAL IONS [J].
COLLIN, HL ;
PETERSON, WK ;
SHELLEY, EG .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1987, 92 (A5) :4757-4762
[8]   Akebono/Suprathermal Mass Spectrometer observations of low-energy ion outflow: Dependence on magnetic activity and solar wind conditions [J].
Cully, CM ;
Donovan, EF ;
Yau, AW ;
Arkos, GG .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2003, 108 (A2)
[9]   Fast ionospheric response to enhanced activity in geospace: Ion feeding of the inner magnetotail [J].
Daglis, IA ;
Axford, WI .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1996, 101 (A3) :5047-5065
[10]  
Delcourt D., 1985, THESIS