On idempotent modifications of MV-algebras

被引:1
作者
Jakubik, Jan [1 ]
机构
[1] Matematicky Ustav SAV, Kosice 04001, Slovakia
关键词
MV-algebra; idempotent modification; subdirect reducibility;
D O I
10.1007/s10587-007-0058-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of idempotent modification of an algebra was introduced by Jezek. He proved that the idempotent modification of a group is subdirectly irreducible. For an MV-algebra.ot we denote by A', A, A and l(A) the idempotent modification, the underlying set or the underlying lattice of d, respectively. In the present paper we prove that if A is semisimple and l(A) is a chain, then is subdirectly irreducible. We deal also with a question of Jezek concerning varieties of algebras.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 7 条
  • [1] Cattaneo G, 1998, TATRA MOUNTAINS MATHEMATICAL PUBLICATIONS, VOL 15, 1998, P227
  • [2] Chang C. C., 1958, Trans. Amer. Math. Soc., V88, P467, DOI DOI 10.1090/S0002-9947-1958-0094302-9
  • [3] Cignoli R. L, 2013, Algebraic foundations of many-valued reasoning, V7
  • [4] DVURECESKIJ A, 2000, NEW TRENDS QUANTUM T
  • [5] Fuchs L, 1963, PARTIALLY ORDERED AL
  • [6] GLUSCHANKOF D, 1993, CZECH MATH J, V43, P249
  • [7] A note on idempotent modifications of groups
    Jezek, J
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2004, 54 (01) : 229 - 231