Existence of zero-order meromorphic solutions of certain q-difference equations

被引:6
作者
Du, Yunfei [1 ]
Gao, Zongsheng [1 ]
Zhang, Jilong [1 ]
Zhao, Ming [2 ]
机构
[1] Beihang Univ, LMIB Sch Math & Syst Sci, Beijing, Peoples R China
[2] China Univ Geosci Beijing, Sch Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Painleve equations; q-Difference; Meromorphic solution; INTEGRABILITY;
D O I
10.1186/s13660-018-1790-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the q-difference equation (f(qz) + f(z)) (f(z) + f(z/q)) = R(z, f), where R(z,f) is rational in f and meromorphic in z. It shows that if the above equation assumes an admissible zero-order meromorphic solution f(z), then either f(z) is a solution of a q-difference Riccati equation or the coefficients satisfy some conditions.
引用
收藏
页数:13
相关论文
共 30 条
[1]   On the extension of the Painleve property to difference equations [J].
Ablowitz, MJ ;
Halburd, R ;
Herbst, B .
NONLINEARITY, 2000, 13 (03) :889-905
[2]  
Al Ghassani A., 2010, THESIS
[3]  
[Anonymous], 1900, Bull. Soc. Math. Fr
[4]  
Barnett DC, 2007, P ROY SOC EDINB A, V137, P457, DOI 10.1017/S0308210506000102
[5]   Value distribution of meromorphic solutions of certain difference Painleve equations [J].
Chen, Zong-Xuan ;
Shon, Kwang Ho .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 364 (02) :556-566
[6]   On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane [J].
Chiang, Yik-Man ;
Feng, Shao-Ji .
RAMANUJAN JOURNAL, 2008, 16 (01) :105-129
[7]  
Fuchs L., 1905, CR HEBD ACAD SCI, V141, P555
[8]  
GAMBIER B., 1910, Acta Math., V33, P1, DOI [10.1007/BF02393211, DOI 10.1007/BF02393211)]
[9]   Growth and integrability in discrete systems [J].
Grammaticos, B ;
Tamizhmani, T ;
Ramani, A ;
Tamizhmani, KM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (18) :3811-3821
[10]  
Gromak VI., 2002, DEGRUYTER STUD MATH, V28