Stochastic viability of convex sets

被引:20
作者
Da Prato, Giuseppe
Frankowska, Helene
机构
[1] Ecole Polytech, CNRS, CREA, F-75005 Paris, France
[2] Scuola Normale Super Pisa, I-56126 Pisa, Italy
关键词
stochastic differential equation; weak solution; viability; oriented distance;
D O I
10.1016/j.jmaa.2006.08.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate necessary and sufficient conditions for viability of a closed convex set K under weak solutions of a stochastic differential equation. These conditions are expressed in terms of the distance function to K. When in addition the boundary of K is smooth, then our necessary and sufficient conditions reduce to two relations that have to be verified just on the boundary of K. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:151 / 163
页数:13
相关论文
共 8 条
  • [1] Degenerate stochastic differential equations and super-Markov chains
    Athreya, SR
    Barlow, MT
    Bass, R
    Perkins, EA
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2002, 123 (04) : 484 - 520
  • [2] AUBIN JP, 1999, APPL FUNCTIONAL ANAL
  • [3] CERRAI S, 2001, J EVOL EQU, V1, P243, DOI DOI 10.1007/PL00001370
  • [4] Da Prato Frankowska, 2001, DYNAMIC SYSTEMS APPL, V10, P177
  • [5] Invariant measure for a class of parabolic degenerate equations
    Da Prato, G
    Frankowska, H
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2006, 12 (04): : 481 - 501
  • [6] Invariance of stochastic control systems with deterministic arguments
    Da Prato, G
    Frankowska, H
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 200 (01) : 18 - 52
  • [7] FLEMING-VIOT PROCESSES IN POPULATION-GENETICS
    ETHIER, SN
    KURTZ, TG
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (02) : 345 - 386
  • [8] Stroock D.W., 1979, MULTIDIMENSIONAL DIF