Inhibition of ACLY Leads to Suppression of Osteoclast Differentiation and Function Via Regulation of Histone Acetylation

被引:38
作者
Guo, Qian
Kang, Honglei
Wang, Jia
Dong, Yimin
Peng, Renpeng
Zhao, Hongjian
Wu, Wei
Guan, Hanfeng
Li, Feng [1 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Orthoped Surg, 1095 Jiefang Ave, Wuhan 430030, Peoples R China
基金
中国国家自然科学基金;
关键词
ACLY; EPIGENETICS; OSTEOCLASTS; OSTEOPOROSIS; ATP-CITRATE LYASE; EPIGENETIC REGULATION; BONE-RESORPTION; METABOLISM; ACTIVATION; INDUCTION; DELETION; AKT; RAC;
D O I
10.1002/jbmr.4399
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
ATP-citrate lyase (ACLY), generating most of the nucleocytosolic acetyl coenzyme A (acetyl-CoA) for histone acetylation, links cell metabolism to epigenetic regulation. Recent investigations demonstrated that ACLY activated by metabolic reprogramming played an essential role in both M1 and M2 macrophage activation via histone acetylation. Previous studies also revealed that histone methylation and acetylation were critical for transcriptional regulation of osteoclast-specific genes. Considering that osteoclast differentiation also undergoes metabolic reprogramming and the activity of ACLY is always Akt-dependent, we inferred that receptor activator of NF-kappa B (RANK) activation might enhance the activity of ACLY through downstream pathways and ACLY might play a role in osteoclast formation. In the current study, we found that ACLY was gradually activated during RANK ligand (RANKL)-induced osteoclast differentiation from bone marrow-derived macrophages (BMMs). Both ACLY knock-down and small molecular ACLY inhibitor BMS-303141 significantly decreased nucleocytosolic acetyl-CoA in BMMs and osteoclasts and suppressed osteoclast formation in vitro. BMS-303141 also suppressed osteoclast formation in vivo and prevents ovariectomy (OVX)-induced bone loss. Further investigations showed that RANKL triggered ACLY translocation into nucleus, consistent with increasing histone H3 acetylation, which was correlated to ACLY. The H3 lysine residues influenced by ACLY were in accordance with GCN5 targets. Using GCN5 knock-down and overexpression, we showed that ACLY and GCN5 functioned in the same pathway for histone H3 acetylation. Analysis of pathways downstream of RANK activation revealed that ACLY was Akt-dependent and predominately affected Akt pathway. With the help of RNA-sequencing, we discovered Rac1 as a downstream regulator of ACLY, which was involved in shACLY-mediated suppression of osteoclast differentiation, cytoskeleton organization, and signal transduction and was transcriptionally regulated by ACLY via histone H3 acetylation. To summarize, our results proved that inhibition of ATP-citrate lyase led to suppression of osteoclast differentiation and function via regulation of histone acetylation. Rac1 could be a downstream regulator of ACLY. (c) 2021 American Society for Bone and Mineral Research (ASBMR).
引用
收藏
页码:2065 / 2080
页数:16
相关论文
共 47 条
[1]   EZH2 Supports Osteoclast Differentiation and Bone Resorption Via Epigenetic and Cytoplasmic Targets [J].
Adamik, Juraj ;
Pulugulla, H. ;
Zhang, Peng ;
Sun, Quanhong ;
Lontos, Konstantinos ;
Macar, David A. ;
Auron, Philip E. ;
Galson, Deborah L. .
JOURNAL OF BONE AND MINERAL RESEARCH, 2020, 35 (01) :181-195
[2]   Histone deacetylases 1 and 2 inhibition suppresses cytokine production and osteoclast bone resorption in vitro [J].
Algate, Kent ;
Haynes, David ;
Fitzsimmons, Tracy ;
Romeo, Ornella ;
Wagner, Florence ;
Holson, Edward ;
Reid, Robert ;
Fairlie, David ;
Bartold, Peter ;
Cantley, Melissa .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2020, 121 (01) :244-258
[3]   ATP-citrate lyase deficiency in the mouse [J].
Beigneux, AP ;
Kosinski, C ;
Gavino, B ;
Horton, JD ;
Skarnes, WC ;
Young, SG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (10) :9557-9564
[4]   Acetyl-CoA Induces Cell Growth and Proliferation by Promoting the Acetylation of Histones at Growth Genes [J].
Cai, Ling ;
Sutter, Benjamin M. ;
Li, Bing ;
Tu, Benjamin P. .
MOLECULAR CELL, 2011, 42 (04) :426-437
[5]   Modulation of matrix metabolism by ATP-citrate lyase in articular chondrocytes [J].
Chen, Liang-Yu ;
Lotz, Martin ;
Terkeltaub, Robert ;
Liu-Bryan, Ru .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (31) :12259-12270
[6]   The Bromodomain of Gcn5 Regulates Site Specificity of Lysine Acetylation on Histone H3 [J].
Cieniewicz, Anne M. ;
Moreland, Linley ;
Ringel, Alison E. ;
Mackintosh, Samuel G. ;
Raman, Ana ;
Gilbert, Tonya M. ;
Wolberger, Cynthia ;
Tackett, Alan J. ;
Taverna, Sean D. .
MOLECULAR & CELLULAR PROTEOMICS, 2014, 13 (11) :2896-2910
[7]   Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation [J].
Covarrubias, Anthony J. ;
Aksoylar, Halil Ibrahim ;
Yu, Jiujiu ;
Snyder, Nathaniel W. ;
Worth, Andrew J. ;
Iyer, Shankar S. ;
Wang, Jiawei ;
Ben-Sahra, Issam ;
Byles, Vanessa ;
Polynne-Stapornkul, Tiffany ;
Espinosa, Erika C. ;
Lamming, Dudley ;
Manning, Brendan D. ;
Zhang, Yijing ;
Blair, Ian A. ;
Horng, Tiffany .
ELIFE, 2016, 5
[8]   Histone H3K27ac separates active from poised enhancers and predicts developmental state [J].
Creyghton, Menno P. ;
Cheng, Albert W. ;
Welstead, G. Grant ;
Kooistra, Tristan ;
Carey, Bryce W. ;
Steine, Eveline J. ;
Hanna, Jacob ;
Lodato, Michael A. ;
Frampton, Garrett M. ;
Sharp, Phillip A. ;
Boyer, Laurie A. ;
Young, Richard A. ;
Jaenisch, Rudolf .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (50) :21931-21936
[9]   Rac deletion in osteoclasts causes severe osteopetrosis [J].
Croke, Monica ;
Ross, F. Patrick ;
Korhonen, Matti ;
Williams, David A. ;
Zou, Wei ;
Teitelbaum, Steven L. .
JOURNAL OF CELL SCIENCE, 2011, 124 (22) :3811-3821
[10]   ATP Citrate Lyase Regulates Myofiber Differentiation and Increases Regeneration by Altering Histone Acetylation [J].
Das, Suman ;
Morvan, Frederic ;
Morozzi, Giulio ;
Jourde, Benjamin ;
Minetti, Giulia C. ;
Kahle, Peter ;
Rivet, Helene ;
Brebbia, Pascale ;
Toussaint, Gauthier ;
Glass, David J. ;
Fornaro, Mara .
CELL REPORTS, 2017, 21 (11) :3003-3011