PLA/clay/wood nanocomposites: nanoclay effects on mechanical and thermal properties

被引:68
作者
Meng, Q. K. [1 ]
Hetzer, M. [1 ]
De Kee, D. [1 ]
机构
[1] Tulane Univ, Tulane Inst Macromol Engn & Sci, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA
基金
美国国家科学基金会;
关键词
poly(lactic acid); nanoclay; wood; nanocomposite; material properties; POLYLACTIDE/LAYERED SILICATE NANOCOMPOSITES; ORGANO-MODIFIED MONTMORILLONITES; POLY(LACTIC ACID); POLY(L-LACTIC ACID); POLYLACTIC ACID; POLYLACTIDE/MONTMORILLONITE NANOCOMPOSITES; PLASTICIZED POLY(L-LACTIDE); FILLER CONTENT; WOOD FLOUR; PART;
D O I
10.1177/0021998310381541
中图分类号
TB33 [复合材料];
学科分类号
摘要
Poly(lactic acid) (PLA)/clay/wood nanocomposites were prepared by melt extrusion of PLA, nanoclay, and wood flour (WF). The clay particles exhibit an intercalated structure in the PLA matrix and the addition of WF slightly increases the spacing in the galleries of the intercalated structure. The intercalated clay particles and WF in the PLA matrix restrict the motion of the PLA molecules and crystals. The tensile and flexural moduli of PLA/clay/wood nanocomposites with 30 wt% WF, respectively, increase from 3.75 to 7.08 GPa and from 3.83 to 6.01 GPa compared to neat PLA by adding up to 5 wt% nanoclay. Voids around clay particles, observed via scanning electron microscopy are associated with the negative effect of the clay particles on the interfacial adhesion between the WF and the PLA matrix. Clay particles improve the thermal decomposition temperature (T(d)) of PLA/clay/wood nanocomposites by about 10 degrees C compared to that of PLA/wood composites. The effects of clay particles on other thermal properties such as glass transition temperature (T(g)), melting temperature (T(m)), and linear thermal expansion are also discussed in this article.
引用
收藏
页码:1145 / 1158
页数:14
相关论文
共 42 条
[1]   Synthesis and properties of poly(lactic acid) [J].
Andreopoulos, AG ;
Hatzi, E ;
Doxastakis, M .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 1999, 10 (01) :29-33
[2]   Thermal and mechanical properties of plasticized poly(L-lactic acid) [J].
Baiardo, M ;
Frisoni, G ;
Scandola, M ;
Rimelen, M ;
Lips, D ;
Ruffieux, K ;
Wintermantel, E .
JOURNAL OF APPLIED POLYMER SCIENCE, 2003, 90 (07) :1731-1738
[3]  
Bandyopadhyay S., 1999, Polymeric Materials Science and Engineering, V81, P159, DOI DOI 10.1177/0021998310381541
[4]   Composites reinforced with cellulose based fibres [J].
Bledzki, AK ;
Gassan, J .
PROGRESS IN POLYMER SCIENCE, 1999, 24 (02) :221-274
[5]   THERMAL-PROPERTIES AND PHYSICAL AGING OF POLY(L-LACTIC ACID) [J].
CELLI, A ;
SCANDOLA, M .
POLYMER, 1992, 33 (13) :2699-2703
[6]   Poly(lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica(II) [J].
Chang, JH ;
An, YU ;
Cho, DH ;
Giannelis, EP .
POLYMER, 2003, 44 (13) :3715-3720
[7]   Flash co-pyrolysis of biomass with polylactic acid. Part 1: Influence on bio-oil yield and heating value [J].
Cornelissen, T. ;
Yperman, J. ;
Reggers, G. ;
Schreurs, S. ;
Carleer, R. .
FUEL, 2008, 87 (07) :1031-1041
[8]   Structure and mechanical properties of poly(L-lactic acid) crystals and fibers [J].
De Oca, H. Montes ;
Ward, I. M. .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2007, 45 (08) :892-902
[9]  
Dinwoodie J., 1989, WOOD NATURES CELLULA
[10]   Microstructure and mechanical properties of carboxylated carbon Nanotubes/Poly(L-lactic acid) composite [J].
Feng, Jiangtao ;
Sui, Jiehe ;
Cai, Wei ;
Gao, Zhiyong .
JOURNAL OF COMPOSITE MATERIALS, 2008, 42 (16) :1587-1595