Self-powered silicon PIN neutron detector based on triboelectric nanogenerator

被引:13
|
作者
Zhu, Zhiyuan [1 ]
Li, Bao [1 ]
Zhao, En [1 ]
Yu, Min [2 ]
机构
[1] Southwest Univ, Coll Elect & Informat Engn, Chongqing Key Lab Nonlinear Circuits & Intelligent, Chongqing 400715, Peoples R China
[2] Peking Univ, Sch Integrated Circuits, Natl Key Lab Nano Micro Fabricat Technol, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerator; self-powered; Neutron radiation detector; SENSORS; DIODE;
D O I
10.1016/j.nanoen.2022.107668
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon PIN neutron detectors play an important role in nuclear science with advantages such as small size, light weight, low cost, and mature manufacturing process. This paper proposes a self-powered neutron detection system based on a triboelectric nanogenerator (TENG) and silicon PIN diode for the first time. The proposed environmentally efficient and low-cost TENG is connected to the detector through a rectifier bridge circuit. When the TENG powered silicon neutron detector is irradiated, the PIN diode generates defects in the silicon body, which leads to a decrease in the lifetime of excess carriers. The neutron dose can be measured by monitoring the change of the terminal voltage of the PIN diode.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Self-powered silicon PIN photoelectric detection system based on triboelectric nanogenerator
    Wang, Jingxi
    Xia, Kequan
    Liu, Jiale
    Li, Tiesong
    Zhao, Xinyang
    Shu, Bin
    Li, Huan
    Guo, Jing
    Yu, Min
    Tang, Wei
    Zhu, Zhiyuan
    NANO ENERGY, 2020, 69
  • [2] Self-Powered Pedometer Based on Triboelectric Nanogenerator
    Liu, Yan
    Ouyang, Han
    Liu, Zhuo
    Zou, Yang
    Zhao, Lu-Ming
    Tian, Jing-Jing
    Li, Ming
    Jiang, Wen
    Li, Zhou
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2017, 46 (05): : 790 - 794
  • [3] Self-Powered Magnetic Sensor Based on a Triboelectric Nanogenerator
    Yang, Ya
    Lin, Long
    Zhang, Yue
    Jing, Qingshen
    Hou, Te-Chien
    Wang, Zhong Lin
    ACS NANO, 2012, 6 (11) : 10378 - 10383
  • [4] Self-powered pressure sensors based on triboelectric nanogenerator
    Xu, Mengfei
    Tao, Kai
    Chen, Zhensheng
    Chen, Hao
    IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 3498 - 3501
  • [5] Triboelectric Nanogenerator Based Self-Powered Tilt Sensor
    Iqbal, Faisal
    Shafi, Muhammad
    Khattak, Muhammad Irfan
    Nawaz, Aamir
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2018, 25 (02): : 325 - 328
  • [6] Self-Powered Humidity Sensor based on Triboelectric Nanogenerator
    Su, Yuanjie
    Xie, Guangzhong
    Wang, Si
    Tai, Huiling
    Zhang, Qiuping
    Du, Hongfei
    Du, Xiaosong
    Jiang, Yadong
    2017 IEEE SENSORS, 2017, : 1212 - 1214
  • [7] Self-Powered Triboelectric Nanogenerator for Security Applications
    Munirathinam, Prabavathi
    Chandrasekhar, Arunkumar
    MICROMACHINES, 2023, 14 (03)
  • [8] Triboelectric nanogenerator as self-powered impact sensor
    Garcia, Cristobal
    Trendafilova, Irina
    Guzman de Villoria, Roberto
    Sanchez del Rio, Jose
    INTERNATIONAL CONFERENCE ON ENGINEERING VIBRATION (ICOEV 2017), 2018, 148
  • [9] Triboelectric Nanogenerator for Self-Powered Gas Sensing
    Zhang, Dongzhi
    Zhou, Lina
    Wu, Yan
    Yang, Chunqing
    Zhang, Hao
    SMALL, 2024, 20 (51)
  • [10] Triboelectric nanogenerator for self-powered traffic monitoring
    Behera, Swayam Aryam
    Kim, Hang-Gyeom
    Jang, Il Ryu
    Hajra, Sugato
    Panda, Swati
    Vittayakorn, Naratip
    Kim, Hoe Joon
    Achary, P. Ganga Raju
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2024, 303