Experimental multiplexing of quantum key distribution with classical optical communication

被引:56
作者
Wang, Liu-Jun [1 ,2 ]
Chen, Luo-Kan [1 ,2 ]
Ju, Lei [1 ,2 ]
Xu, Mu-Lan [3 ]
Zhao, Yong [3 ]
Chen, Kai [1 ,2 ,4 ,5 ]
Chen, Zeng-Bing [1 ,2 ,4 ,5 ]
Chen, Teng-Yun [1 ,2 ,4 ,5 ]
Pan, Jian-Wei [1 ,2 ,4 ,5 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] Quantum Commun Technol Co Ltd, Hefei 230088, Anhui, Peoples R China
[4] Univ Sci & Technol China, CAS Ctr Excellence, Hefei 230026, Anhui, Peoples R China
[5] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
NETWORK; FIBER; CRYPTOGRAPHY; QKD; PON;
D O I
10.1063/1.4913483
中图分类号
O59 [应用物理学];
学科分类号
摘要
We demonstrate the realization of quantum key distribution (QKD) when combined with classical optical communication, and synchronous signals within a single optical fiber. In the experiment, the classical communication sources use Fabry-Perot (FP) lasers, which are implemented extensively in optical access networks. To perform QKD, multistage band-stop filtering techniques are developed, and a wavelength-division multiplexing scheme is designed for the multi-longitudinal-mode FP lasers. We have managed to maintain sufficient isolation among the quantum channel, the synchronous channel and the classical channels to guarantee good QKD performance. Finally, the quantum bit error rate remains below a level of 2% across the entire practical application range. The proposed multiplexing scheme can ensure low classical light loss, and enables QKD over fiber lengths of up to 45km simultaneously when the fibers are populated with bidirectional FP laser communications. Our demonstration paves the way for application of QKD to current optical access networks, where FP lasers are widely used by the end users. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 34 条
  • [1] Aleksic S, 2013, EUR CONF NETW OPTIC, P11, DOI 10.1109/NOC-OCI.2013.6582861
  • [2] Bennett C H, 1984, P IEEE INT C COMP SY, V175, P175
  • [3] Optical networking for quantum key distribution and quantum communications
    Chapuran, T. E.
    Toliver, P.
    Peters, N. A.
    Jackel, J.
    Goodman, M. S.
    Runser, R. J.
    McNown, S. R.
    Dallmann, N.
    Hughes, R. J.
    McCabe, K. P.
    Nordholt, J. E.
    Peterson, C. G.
    Tyagi, K. T.
    Mercer, L.
    Dardy, H.
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11
  • [4] Metropolitan all-pass and inter-city quantum communication network
    Chen, Teng-Yun
    Wang, Jian
    Liang, Hao
    Liu, Wei-Yue
    Liu, Yang
    Jiang, Xiao
    Wang, Yuan
    Wan, Xu
    Cai, Wen-Qi
    Ju, Lei
    Chen, Luo-Kan
    Wang, Liu-Jun
    Gao, Yuan
    Chen, Kai
    Peng, Cheng-Zhi
    Chen, Zeng-Bing
    Pan, Jian-Wei
    [J]. OPTICS EXPRESS, 2010, 18 (26): : 27217 - 27225
  • [5] Quantum information to the home
    Choi, Iris
    Young, Robert J.
    Townsend, Paul D.
    [J]. NEW JOURNAL OF PHYSICS, 2011, 13
  • [6] Quantum key distribution on a 10Gb/s WDM-PON
    Choi, Iris
    Young, Robert J.
    Townsend, Paul D.
    [J]. OPTICS EXPRESS, 2010, 18 (09): : 9600 - 9612
  • [7] Quantum metropolitan optical network based on wavelength division multiplexing
    Ciurana, A.
    Martinez-Mateo, J.
    Peev, M.
    Poppe, A.
    Walenta, N.
    Zbinden, H.
    Martin, V.
    [J]. OPTICS EXPRESS, 2014, 22 (02): : 1576 - 1593
  • [8] Continuous operation of high bit rate quantum key distribution
    Dixon, A. R.
    Yuan, Z. L.
    Dynes, J. F.
    Sharpe, A. W.
    Shields, A. J.
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (16)
  • [9] QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM
    EKERT, AK
    [J]. PHYSICAL REVIEW LETTERS, 1991, 67 (06) : 661 - 663
  • [10] Quantum key distribution and 1 Gbps data encryption over a single fibre
    Eraerds, P.
    Walenta, N.
    Legre, M.
    Gisin, N.
    Zbinden, H.
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12