Curve counting in genus one: Elliptic singularities and relative geometry

被引:5
|
作者
Battistella, Luca [1 ]
Nabijou, Navid [2 ]
Ranganathan, Dhruv [2 ]
机构
[1] Heidelberg Univ, Math Inst, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[2] Univ Cambridge, Ctr Math Sci, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
来源
ALGEBRAIC GEOMETRY | 2021年 / 8卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
enumerative geometry; logarithmic Gromov-Witten theory; elliptic singularities; quantum Lefschetz; GROMOV-WITTEN INVARIANTS; STABLE LOGARITHMIC MAPS; MODULAR COMPACTIFICATIONS; ENUMERATIVE GEOMETRY; SPACE; PAIRS;
D O I
10.14231/AG-2021-020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct and study the reduced, relative, genus one Gromov-Witten theory of very ample pairs. These invariants form the principal component contribution to relative Gromov-Witten theory in genus one and are relative versions of Zinger's reduced Gromov-Witten invariants. We relate the relative and absolute theories by degeneration of the tangency conditions, and the resulting formulas generalise a well-known recursive calculation scheme put forward by Gathmann in genus zero. The geometric input is a desingularisation of the principal component of the moduli space of genus one logarithmic stable maps to a very ample pair, using the geometry of elliptic singularities. Our study passes through general techniques for calculating integrals on logarithmic blowups of moduli spaces of stable maps, which may be of independent interest.
引用
收藏
页码:637 / 679
页数:43
相关论文
共 50 条