Monadic Curry System N1*

被引:0
作者
Abe, Jair Minoro [1 ,2 ]
Nakamatsu, Kazumi [3 ]
Akama, Seiki [4 ]
机构
[1] Univ Estadual Paulista, Grad Program Prod Engn, ICET, R Dr Bacelar 1212, BR-04026002 Sao Paulo, Brazil
[2] Univ Sao Paulo, Inst Adv Studies, Sao Paulo, Brazil
[3] Univ Hyogo, Sch Human Sci & Environm H S E, Kobe, Hyogo 6500044, Japan
[4] C Republic, Tokyo, Japan
来源
KNOWLEDGE-BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT III | 2010年 / 6278卷
关键词
Curry algebra; algebraic logic; paraconsistent logic; paracomplete logic; non-alethic logic;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper is a sequel to [5], [6]. We present the Curry monadic system N-1* which has as extensions the Curry monadic algebras C-1* and P-1*. All those systems are extensions of the classical monadic algebras introduced by Halmos [13]. Also the Curry monadic system NI constitutes an algebraic version of the non-alethic predicate logic N-1*.
引用
收藏
页码:143 / +
页数:2
相关论文
共 15 条
[1]  
Abe J.M., 1996, ATTI ACC LINCEI REND, V7, P125
[2]  
Abe J.M, 1998, LOG ANAL, V161-162-163, P5
[3]  
Abe J.M., 1987, B SECTION LOGIC POLI, V16, P151
[4]  
Abe JM, 2007, LECT NOTES ARTIF INT, V4693, P893
[5]  
Abe JM, 2009, LECT NOTES ARTIF INT, V5712, P388, DOI 10.1007/978-3-642-04592-9_49
[6]  
Abe JM, 2009, STUD COMPUT INTELL, V199, P341
[7]  
[Anonymous], 1952, INTRO METAMATHEMATIC
[8]  
Barros C.M., 1995, SERIE LOGICA TEORIA, V20
[9]  
Curry Haskell., 1977, FDN MATH LOGIC
[10]  
da Costa N. C. A., 1974, Notre Dame Journal of Formal Logic, V15, P497, DOI 10.1305/ndjfl/1093891487