FIXED POINT THEOREMS FOR SOME GENERALIZED NONEXPANSIVE MAPPINGS IN BANACH SPACES

被引:0
作者
Amini-Harandi, A. [1 ]
机构
[1] Univ Isfahan, Dept Mathemat, Esfahan, Iran
关键词
fixed point; coincidence point; nonexpansive map; uniformly convex space;
D O I
10.18514/MMN.2014.720
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first introduce the class of generalized nonexpansive mappings in Banach spaces. This class contains both the classes of nonexpansive and alpha-nonexpansive mappings. In addition, we obtain some fixed point and coincidence point theorems for generalized nonexpansive mappings in uniformly convex Banach spaces. Our results extend some well-known results in literature.
引用
收藏
页码:279 / 285
页数:7
相关论文
共 12 条
[1]  
[Anonymous], 1984, Monogr. Textbooks Pure Appl. Math.
[2]   Fixed point theorem for α-nonexpansive mappings in Banach spaces [J].
Aoyama, Koji ;
Kohsaka, Fumiaki .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (13) :4387-4391
[3]  
Aoyama K, 2010, J NONLINEAR CONVEX A, V11, P335
[4]  
Bruck R. E., 1977, HOUSTON J MATH, V3, P459
[5]  
Goebel K., 1990, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, V28
[6]   Some fixed point generalizations are not real generalizations [J].
Haghi, R. H. ;
Rezapour, Sh. ;
Shahzad, N. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (05) :1799-1803
[7]  
Singh SL, 2002, INDIAN J PURE AP MAT, V33, P531
[8]   ON FIRMLY NONEXPANSIVE-MAPPINGS [J].
SMARZEWSKI, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 113 (03) :723-725
[9]  
Takahashi W., 2000, Nonlinear functional analysis
[10]  
Takahashi Y, 2002, J NONLINEAR CONVEX A, V3, P267