A class of braided monoidal categories via quasitriangular Hopf π-crossed coproduct algebras

被引:2
作者
Ma, Tianshui [1 ]
Liu, Linlin [1 ]
Li, Haiying [1 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
关键词
Quasitriangular Hopf pi-algebra; Hopf pi-crossed coproduct; braided monoidal category;
D O I
10.1142/S0219498815500103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let pi be a group and (H = {H-alpha} alpha is an element of pi, mu, eta) a Hopf pi-algebra. First, we introduce the concept of quasitriangular Hopf pi-algebra, and then prove that the left H-p-module category M-H, where (H, R) is a quasitriangular Hopf pi-algebra, is a braided monoidal category. Second, we give the construction of Hopf pi-crossed coproduct algebra C-nu(pi). H. At last, the necessary and sufficient conditions for C-nu(pi). H to be a quasitriangular Hopf pi-algebra are derived, and in this case, C-nu(pi). HM is a braided monoidal category.
引用
收藏
页数:19
相关论文
共 13 条
  • [1] LIN BI, 1982, COMMUN ALGEBRA, V10, P1
  • [2] Hopf π-Crossed Biproduct and Related Coquasitriangular Structures
    Ma, Tianshui
    Song, Yanan
    [J]. RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2013, 130 : 127 - 145
  • [3] QUASITRIANGULARITY OF BRZEZINSKI'S CROSSED COPRODUCTS
    Ma, Tianshui
    Li, Haiying
    Wang, Shuanhong
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2011, 10 (02) : 241 - 255
  • [4] Mac Lane S., 1971, GRADUATE TEXTS IN MA, V5
  • [5] Sweedler M.E., 1969, Hopf algebras. Mathematics lecture note series
  • [6] Turaev V., 2000, ARXIV MATH 0005291
  • [7] Turaev V., 1999, ARXIV MATH 9910010
  • [8] Hopf group-coalgebras
    Virelizier, A
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 171 (01) : 75 - 122
  • [9] Group entwining structures and group coalgebra Galois extensions
    Wang, SH
    [J]. COMMUNICATIONS IN ALGEBRA, 2004, 32 (09) : 3437 - 3457
  • [10] Group twisted smash products and Doi-Hopf modules for T-coalgebras
    Wang, SH
    [J]. COMMUNICATIONS IN ALGEBRA, 2004, 32 (09) : 3417 - 3436