Optimization of the finned double-pipe heat exchanger using nanofluids as working fluids

被引:27
作者
Dalkilic, Ahmet Selim [1 ]
Mercan, Hatice [2 ]
Ozcelik, Guven [1 ,3 ]
Wongwises, Somchai [4 ,5 ]
机构
[1] Yildiz Tech Univ, Fac Mech Engn, Dept Mech Engn, Heat & Thermodynam Div, TR-34349 Istanbul, Turkey
[2] Yildiz Tech Univ, Fac Mech Engn, Dept Mechatron Engn, TR-34349 Istanbul, Turkey
[3] Istanbul AREL Univ, Fac Engn & Architecture, Dept Mech Engn, TR-34537 Istanbul, Turkey
[4] King Mongkuts Univ Technol Thonburi, Dept Mech Engn Fac Engn, Fluid Mech Thermal Engn & Multiphase Flow Res Lab, FUTURE, Bangkok 10140, Thailand
[5] Royal Soc Thailand, Acad Sci, Bangkok 10300, Thailand
关键词
Double-pipe heat exchanger; Hairpin heat exchanger; Nanofluid; Fin; Optimization; PRESSURE-DROP; PERFORMANCE ENHANCEMENT; AL2O3-WATER NANOFLUIDS; DESIGN; FLOW; SIMULATION; STABILITY; PLAIN; TUBES; CFD;
D O I
10.1007/s10973-020-09290-x
中图分类号
O414.1 [热力学];
学科分类号
摘要
The heat exchanger pipe diameter has a significant effect on the flow characteristics as well as on the initial investment, operation and overall cost. Increasing fin dimensions increases the annulus hydraulic diameters. Even though the total volume of the heat exchanger remains unchanged between the finned and bare designs, the heat duty increases with increased heat transfer area for the finned design. The fins should be designed, and the dimensions should be calculated with special attention for different flow rates and heat exchanger dimensions. In this study, number, geometry and dimensions of the fins are determined using the algorithms available in the literature. The operational condition optimization is carried out accompanied with the cost analysis. In addition, the effects of the types of working fluids and fouled and clean cases are investigated for the total heat transfer enhancement in parallel with performance, lifetime and cost issues. A detailed analysis is presented for finned and unfinned double-pipe heat exchanger models for pure engine oil and its nanofluid mixtures with Ti, TiO2, Cu, CuO, Al and Al2O3 nanoparticles, multi-wall carbon nanotubes and graphene nanosheet having a constant particle concentration in the liquid phase. The nanofluid is flowing in annulus side, whereas the seawater is flowing in the tube side. It is observed that both the pressure drop and the pumping power increase with the increasing fin number and decrease with the cleanliness factor, whereas the total tube number decreases with increasing fin number. It is found that different types of nanofluids affect the cost and optimum annulus side velocity significantly. The results are summarized in several figures that consider the increasing Reynolds number with the cleanliness factor, the heat transfer coefficient and the pressure drop, the friction factor with changing mass flow rate and the cost values with corresponding annulus side velocities. Finally, the overall characteristics of the trend lines are provided in the figures.
引用
收藏
页码:859 / 878
页数:20
相关论文
共 50 条
  • [1] Optimization of the finned double-pipe heat exchanger using nanofluids as working fluids
    Ahmet Selim Dalkılıç
    Hatice Mercan
    Güven Özçelik
    Somchai Wongwises
    Journal of Thermal Analysis and Calorimetry, 2021, 143 : 859 - 878
  • [2] INVESTIGATION ON THE ENHANCEMENT OF HEAT TRANSFER IN COUNTERFLOW DOUBLE-PIPE HEAT EXCHANGER USING NANOFLUIDS
    Balan, Varadhan
    Ramakrishnan, Surendran
    Palani, Gopinath
    Selvaraju, Mayakannan
    THERMAL SCIENCE, 2024, 28 (1A): : 233 - 240
  • [3] Thermally developing flow in finned double-pipe heat exchanger
    Iqbal, Mazhar
    Syed, K. S.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (10) : 1145 - 1159
  • [4] Novel usage of the curved rectangular fin on the heat transfer of a double-pipe heat exchanger with a nanofluid
    Jalili, Bahram
    Aghaee, Narges
    Jalili, Payam
    Ganji, Davood Domiri
    CASE STUDIES IN THERMAL ENGINEERING, 2022, 35
  • [5] ANALYSIS OF THERMALLY DEVELOPING LAMINAR CONVECTION IN THE FINNED DOUBLE-PIPE HEAT EXCHANGER
    Iqbal, Mazhar
    Syed, K. S.
    HEAT TRANSFER RESEARCH, 2014, 45 (01) : 1 - 21
  • [6] Thermal analysis of double-pipe heat exchanger in thermodynamic vent system
    Liu, Zhan
    Li, Yanzhong
    Zhou, Ke
    ENERGY CONVERSION AND MANAGEMENT, 2016, 126 : 837 - 849
  • [7] Numerical simulation of nanofluids forced convection in a corrugated double-pipe heat exchanger
    Ding, Zi
    Qi, Cong
    Luo, Tao
    Wang, Yuxing
    Tu, Jianglin
    Wang, Chengchao
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2022, 100 (08) : 1954 - 1964
  • [8] Pressure drop and convective heat transfer of water and nanofluids in a double-pipe helical heat exchanger
    Wu, Zan
    Wang, Lei
    Sunden, Bengt
    APPLIED THERMAL ENGINEERING, 2013, 60 (1-2) : 266 - 274
  • [9] What dominates heat transfer performance of a double-pipe heat exchanger
    Zheng, Dan
    Hu, Zhenwei
    Tian, Liting
    Wang, Jin
    Sunden, Bengt
    OPEN PHYSICS, 2021, 19 (01): : 863 - 866
  • [10] DESIGN AND ANALYSIS OF DOUBLE-PIPE HEAT EXCHANGER USING BOTH HELICAL AND ROTATING INNER PIPE
    Koca, Tarkan
    Citlak, Aydin
    THERMAL SCIENCE, 2021, 25 (02): : 1545 - 1559