Optimization of the finned double-pipe heat exchanger using nanofluids as working fluids

被引:28
作者
Dalkilic, Ahmet Selim [1 ]
Mercan, Hatice [2 ]
Ozcelik, Guven [1 ,3 ]
Wongwises, Somchai [4 ,5 ]
机构
[1] Yildiz Tech Univ, Fac Mech Engn, Dept Mech Engn, Heat & Thermodynam Div, TR-34349 Istanbul, Turkey
[2] Yildiz Tech Univ, Fac Mech Engn, Dept Mechatron Engn, TR-34349 Istanbul, Turkey
[3] Istanbul AREL Univ, Fac Engn & Architecture, Dept Mech Engn, TR-34537 Istanbul, Turkey
[4] King Mongkuts Univ Technol Thonburi, Dept Mech Engn Fac Engn, Fluid Mech Thermal Engn & Multiphase Flow Res Lab, FUTURE, Bangkok 10140, Thailand
[5] Royal Soc Thailand, Acad Sci, Bangkok 10300, Thailand
关键词
Double-pipe heat exchanger; Hairpin heat exchanger; Nanofluid; Fin; Optimization; PRESSURE-DROP; PERFORMANCE ENHANCEMENT; AL2O3-WATER NANOFLUIDS; DESIGN; FLOW; SIMULATION; STABILITY; PLAIN; TUBES; CFD;
D O I
10.1007/s10973-020-09290-x
中图分类号
O414.1 [热力学];
学科分类号
摘要
The heat exchanger pipe diameter has a significant effect on the flow characteristics as well as on the initial investment, operation and overall cost. Increasing fin dimensions increases the annulus hydraulic diameters. Even though the total volume of the heat exchanger remains unchanged between the finned and bare designs, the heat duty increases with increased heat transfer area for the finned design. The fins should be designed, and the dimensions should be calculated with special attention for different flow rates and heat exchanger dimensions. In this study, number, geometry and dimensions of the fins are determined using the algorithms available in the literature. The operational condition optimization is carried out accompanied with the cost analysis. In addition, the effects of the types of working fluids and fouled and clean cases are investigated for the total heat transfer enhancement in parallel with performance, lifetime and cost issues. A detailed analysis is presented for finned and unfinned double-pipe heat exchanger models for pure engine oil and its nanofluid mixtures with Ti, TiO2, Cu, CuO, Al and Al2O3 nanoparticles, multi-wall carbon nanotubes and graphene nanosheet having a constant particle concentration in the liquid phase. The nanofluid is flowing in annulus side, whereas the seawater is flowing in the tube side. It is observed that both the pressure drop and the pumping power increase with the increasing fin number and decrease with the cleanliness factor, whereas the total tube number decreases with increasing fin number. It is found that different types of nanofluids affect the cost and optimum annulus side velocity significantly. The results are summarized in several figures that consider the increasing Reynolds number with the cleanliness factor, the heat transfer coefficient and the pressure drop, the friction factor with changing mass flow rate and the cost values with corresponding annulus side velocities. Finally, the overall characteristics of the trend lines are provided in the figures.
引用
收藏
页码:859 / 878
页数:20
相关论文
共 44 条
[1]   Numerical study of conjugate heat transfer in a double-pipe with exponential fins using DGFEM [J].
Ahmad, Waseem ;
Syed, Khalid Saifullah ;
Ishaq, Muhammad ;
Hassan, Ahmad ;
Iqbal, Zafar .
APPLIED THERMAL ENGINEERING, 2017, 111 :1184-1201
[2]   Rotating metal foam structures for performance enhancement of double-pipe heat exchangers [J].
Alhusseny, Ahmed ;
Turan, Ali ;
Nasser, Adel .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 105 :124-139
[3]   Toward improved heat transfer performance of annular heat exchangers with water/ethylene glycol-based nanofluids containing graphene nanoplatelets [J].
Arzani, Hamed Khajeh ;
Amiri, Ahmad ;
Arzani, Hamid Khajeh ;
Bin Rozali, Shaifulazuar ;
Kazi, S. N. ;
Badarudin, A. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2016, 126 (03) :1427-1436
[4]   Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids [J].
Bhattacharya, P ;
Saha, SK ;
Yadav, A ;
Phelan, PE ;
Prasher, RS .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (11) :6492-6494
[5]   Optimization of a finned concentric pipes heat exchanger for industrial recuperative burners [J].
Cavazzuti, Marco ;
Agnani, Elia ;
Corticelli, Mauro A. .
APPLIED THERMAL ENGINEERING, 2015, 84 :110-117
[6]   Numerical investigation for the calculation of TiO2-water nanofluids' pressure drop in plain and enhanced pipes [J].
Celen, Ali ;
Kayaci, Nurullah ;
Cebi, Alican ;
Demir, Hakan ;
Dalkilic, Ahmet Selim ;
Wongwises, Somchai .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2014, 53 :98-108
[7]  
Chavda N. K., 2015, Int. J.Res. Eng. Technol, V4, P688, DOI [10.15623/ijret.2015.0404119, DOI 10.15623/IJRET.2015.0404119, DOI 10.15623/ijret.2015.0404119]
[8]   Experimental Study on the Stability and Viscosity for the Blends of Functionalized MWCNTs with Refrigeration Compressor Oils [J].
Dalkilic, Ahmet Selim ;
Mahian, Omid ;
Kucukyildirim, Bedri Onur ;
Eker, Aysegul Akdogan ;
Ozturk, Tarik Hamza ;
Jumpholkul, Chaiwat ;
Wongwises, Somchai .
CURRENT NANOSCIENCE, 2018, 14 (03) :216-226
[9]   Determination of Optimum Velocity for Various Nanofluids Flowing in a Double-Pipe Heat Exchanger [J].
Dalkilic, Ahmet Selim ;
Acikgoz, Ozgen ;
Gumus, Muhammed Ali ;
Wongwises, Somchai .
HEAT TRANSFER ENGINEERING, 2017, 38 (01) :11-25
[10]   Experimental studies on heat transfer and pressure drop characteristics for new arrangements of corrugated tubes in a double pipe heat exchanger [J].
Dizaji, Hamed Sadighi ;
Jafarmadar, Samad ;
Mobadersani, Farokh .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2015, 96 :211-220