Creeping flow analysis of an integrated microfluidic device for rheometry

被引:7
作者
Bandalusena, H. C. Hemaka [2 ]
Zimmerman, William B. [2 ]
Rees, Julia M. [1 ]
机构
[1] Univ Sheffield, Dept Appl Math, Sheffield S3 7RH, S Yorkshire, England
[2] Univ Sheffield, Dept Chem & Proc Engn, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Rheology; Microfluidics; Inverse methods; Non-Newtonian fluids; Mapping analysis; INVERSE ANALYSIS; FLUID; MICRORHEOMETRY; IDENTIFICATION; LIQUIDS; LAW;
D O I
10.1016/j.jnnfm.2010.06.013
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper analyzes flow of a power-law fluid in a microfluidic device for the purpose of discovering an algorithm for rheometry. Previous investigations have shown that measurement of the velocity field or the pressure field and the inlet flow rate in a microfluidic T-junction allow determination of rheological parameters uniquely. However, the range of shear induced within the flow domain was limited by the constant pressure drop applied across the micro-device. To avoid this control restriction and further develop our inverse technique, a constant flow rate system was investigated. With this configuration, the flow rate can be set appropriately to achieve a desired shear range and the theological parameters can be inferred from the measurement of mean pressure at the inlet and at the junction. By assuming creeping flow conditions and the existence of a Hagen-Poiseuille-like law for the relationship between the pressure drop and the volumetric flow rate, the analysis produces an algorithm that is self-consistent (demonstrates the Hagen-Poiseuille law) and permits the inference of the power-law parameters from the ratio of any two field variables measured over a region (averaged), the pressure drop, and the volumetric flow rate. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1302 / 1308
页数:7
相关论文
共 20 条
[1]   Microfluidic rheometry of a polymer solution by micron resolution particle image velocimetry: a model validation study [J].
Bandalusena, H. C. Hemaka ;
Zimmerman, William B. ;
Rees, Julia M. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2009, 20 (11)
[2]   An inverse methodology for the rheology of a power-law non-Newtonian fluid [J].
Bandulasena, H. C. H. ;
Zimmerman, W. B. ;
Rees, J. M. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2008, 222 (05) :761-768
[3]   RHEOMETRY OF NON-NEWTONIAN POLYMER SOLUTION USING MICROCHANNEL PRESSURE DRIVEN FLOW [J].
Bandulasena, H. C. H. ;
Zimmerman, W. B. ;
Rees, J. M. .
APPLIED RHEOLOGY, 2010, 20 (05) :U2-U9
[4]   Gap-dependent microrheometry of complex liquids [J].
Clasen, C ;
McKinley, GH .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2004, 124 (1-3) :1-10
[5]   On slip velocity boundary conditions for electroosmotic flow near sharp corners [J].
Craven, Thomas J. ;
Rees, Julia M. ;
Zimmerman, William B. .
PHYSICS OF FLUIDS, 2008, 20 (04)
[6]   Rheology of complex fluids by particle image velocimetry in microchannels [J].
Degre, Guillaume ;
Joseph, Pierre ;
Tabeling, Patrick ;
Lerouge, Sandra ;
Cloitre, Michel ;
Ajdari, Armand .
APPLIED PHYSICS LETTERS, 2006, 89 (02)
[7]   An inverse analysis using a finite element model for identification of rheological parameters [J].
Gavrus, A ;
Massoni, E ;
Chenot, JL .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 1996, 60 (1-4) :447-454
[8]   Viscosimeter on a microfluidic chip [J].
Guillot, Pierre ;
Panizza, Pascal ;
Salmon, Jean-Baptiste ;
Joanicot, Mathieu ;
Colin, Annie ;
Bruneau, Charles-Henri ;
Colin, Thierry .
LANGMUIR, 2006, 22 (14) :6438-6445
[9]   Oscillatory magnetic bead rheometer for complex fluid microrheometry [J].
Keller, M ;
Schilling, J ;
Sackmann, E .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (09) :3626-3634
[10]   A microfluidic experimental platform with internal pressure measurements [J].
Kohl, MJ ;
Abdel-Khalik, SI ;
Jeter, SM ;
Sadowski, DL .
SENSORS AND ACTUATORS A-PHYSICAL, 2005, 118 (02) :212-221