A new automatic convolutional neural network based on deep reinforcement learning for fault diagnosis

被引:7
作者
Wen, Long [1 ]
Wang, You [1 ]
Li, Xinyu [2 ]
机构
[1] China Univ Geosci, Sch Mech Engn & Elect Informat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
deep reinforcement learning; hyper parameter optimization; convolutional neural network; fault diagnosis; HYPERPARAMETER OPTIMIZATION; TIME;
D O I
10.1007/s11465-022-0673-7
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Convolutional neural network (CNN) has achieved remarkable applications in fault diagnosis. However, the tuning aiming at obtaining the well-trained CNN model is mainly manual search. Tuning requires considerable experiences on the knowledge on CNN training and fault diagnosis, and is always time consuming and labor intensive, making the automatic hyper parameter optimization (HPO) of CNN models essential. To solve this problem, this paper proposes a novel automatic CNN (ACNN) for fault diagnosis, which can automatically tune its three key hyper parameters, namely, learning rate, batch size, and L2-regulation. First, a new deep reinforcement learning (DRL) is developed, and it constructs an agent aiming at controlling these three hyper parameters along with the training of CNN models online. Second, a new structure of DRL is designed by combining deep deterministic policy gradient and long short-term memory, which takes the training loss of CNN models as its input and can output the adjustment on these three hyper parameters. Third, a new training method for ACNN is designed to enhance its stability. Two famous bearing datasets are selected to evaluate the performance of ACNN. It is compared with four commonly used HPO methods, namely, random search, Bayesian optimization, tree Parzen estimator, and sequential model-based algorithm configuration. ACNN is also compared with other published machine learning (ML) and deep learning (DL) methods. The results show that ACNN outperforms these HPO and ML/DL methods, validating its potential in fault diagnosis.
引用
收藏
页数:12
相关论文
共 41 条
[1]  
[Anonymous], 2016, ARXIV160204062
[2]   Bayesian approach and time series dimensionality reduction to LSTM-based model-building for fault diagnosis of a reciprocating compressor [J].
Cabrera, Diego ;
Guaman, Adriana ;
Zhang, Shaohui ;
Cerrada, Mariela ;
Sanchez, Rene-Vinicio ;
Cevallos, Juan ;
Long, Jianyu ;
Li, Chuan .
NEUROCOMPUTING, 2020, 380 :51-66
[3]  
Chen JB, 2021, IEEE T INSTRUM MEAS, V70, DOI [10.1109/TIM.2021.3077673, 10.1109/tim.2020.3020682]
[4]   Basic research on machinery fault diagnostics: Past, present, and future trends [J].
Chen, Xuefeng ;
Wang, Shibin ;
Qiao, Baijie ;
Chen, Qiang .
FRONTIERS OF MECHANICAL ENGINEERING, 2018, 13 (02) :264-291
[5]   A deep learning method for bearing fault diagnosis based on Cyclic Spectral Coherence and Convolutional Neural Networks [J].
Chen, Zhuyun ;
Mauricio, Alexandre ;
Li, Weihua ;
Gryllias, Konstantinos .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 140
[6]  
Feurer M., 2018, INT WORKSHOP AUTOMAT, P1189
[7]   Hyperparameter Optimization Using a Genetic Algorithm Considering Verification Time in a Convolutional Neural Network [J].
Han, Ji-Hoon ;
Choi, Dong-Jin ;
Park, Sang-Uk ;
Hong, Sun-Ki .
JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2020, 15 (02) :721-726
[8]  
He FX, 2019, ADV NEUR IN, V32
[9]   Rolling element bearing fault diagnosis using convolutional neural network and vibration image [J].
Hoang, Duy-Tang ;
Kang, Hee-Jun .
COGNITIVE SYSTEMS RESEARCH, 2019, 53 :42-50
[10]  
Hutter F, 2019, SPRING SER CHALLENGE, P1, DOI 10.1007/978-3-030-05318-5