A new automatic convolutional neural network based on deep reinforcement learning for fault diagnosis

被引:5
作者
Wen, Long [1 ]
Wang, You [1 ]
Li, Xinyu [2 ]
机构
[1] China Univ Geosci, Sch Mech Engn & Elect Informat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
deep reinforcement learning; hyper parameter optimization; convolutional neural network; fault diagnosis; HYPERPARAMETER OPTIMIZATION; TIME;
D O I
10.1007/s11465-022-0673-7
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Convolutional neural network (CNN) has achieved remarkable applications in fault diagnosis. However, the tuning aiming at obtaining the well-trained CNN model is mainly manual search. Tuning requires considerable experiences on the knowledge on CNN training and fault diagnosis, and is always time consuming and labor intensive, making the automatic hyper parameter optimization (HPO) of CNN models essential. To solve this problem, this paper proposes a novel automatic CNN (ACNN) for fault diagnosis, which can automatically tune its three key hyper parameters, namely, learning rate, batch size, and L2-regulation. First, a new deep reinforcement learning (DRL) is developed, and it constructs an agent aiming at controlling these three hyper parameters along with the training of CNN models online. Second, a new structure of DRL is designed by combining deep deterministic policy gradient and long short-term memory, which takes the training loss of CNN models as its input and can output the adjustment on these three hyper parameters. Third, a new training method for ACNN is designed to enhance its stability. Two famous bearing datasets are selected to evaluate the performance of ACNN. It is compared with four commonly used HPO methods, namely, random search, Bayesian optimization, tree Parzen estimator, and sequential model-based algorithm configuration. ACNN is also compared with other published machine learning (ML) and deep learning (DL) methods. The results show that ACNN outperforms these HPO and ML/DL methods, validating its potential in fault diagnosis.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A new automatic convolutional neural network based on deep reinforcement learning for fault diagnosis
    WEN Long
    WANG You
    LI Xinyu
    Frontiers of Mechanical Engineering, 2022, 17 (02)
  • [2] A new automatic convolutional neural network based on deep reinforcement learning for fault diagnosis
    Long Wen
    You Wang
    Xinyu Li
    Frontiers of Mechanical Engineering, 2022, 17
  • [3] Intelligent machine fault diagnosis based on deep transfer convolutional neural network and extreme learning machine
    Cen, Jian
    Chen, Zhihao
    Wu, Yinbo
    Yang, Zhuohong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2023, 237 (09) : 2201 - 2212
  • [4] Deep Convolutional Neural Network Using Transfer Learning for Fault Diagnosis
    Zhang, Dong
    Zhou, Taotao
    IEEE ACCESS, 2021, 9 : 43889 - 43897
  • [5] A review on convolutional neural network in rolling bearing fault diagnosis
    Li, Xin
    Ma, Zengqiang
    Yuan, Zonghao
    Mu, Tianming
    Du, Guoxin
    Liang, Yan
    Liu, Jingwen
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (07)
  • [6] Deep transfer learning rolling bearing fault diagnosis method based on convolutional neural network feature fusion
    Yu, Di
    Fu, Haiyue
    Song, Yanchen
    Xie, Wenjian
    Xie, Zhijie
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (01)
  • [7] Fault diagnosis of bearings based on deep separable convolutional neural network and spatial dropout
    Zhang, Jiqiang
    Kong, Xiangwei
    LI, Xueyi
    Hu, Zhiyong
    Cheng, Liu
    Yu, Mingzhu
    CHINESE JOURNAL OF AERONAUTICS, 2022, 35 (10) : 301 - 312
  • [8] A new fault diagnosis method based on convolutional neural network and compressive sensing
    Ma, Yunfei
    Jia, Xisheng
    Bai, Huajun
    Liu, Guozeng
    Wang, Guanglong
    Guo, Chiming
    Wang, Shuangchuan
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2019, 33 (11) : 5177 - 5188
  • [9] A new fault diagnosis method based on convolutional neural network and compressive sensing
    Yunfei Ma
    Xisheng Jia
    Huajun Bai
    Guozeng Liu
    Guanglong Wang
    Chiming Guo
    Shuangchuan Wang
    Journal of Mechanical Science and Technology, 2019, 33 : 5177 - 5188
  • [10] Cable fault diagnosis with generalization capability using incremental learning and deep convolutional neural network
    Chi, Peng
    Liang, Rui
    Hao, Chuncheng
    Li, Guochang
    Xin, Meng
    ELECTRIC POWER SYSTEMS RESEARCH, 2025, 241